Matrix Multiplication using MPI Parallel Programming Approach

Updated tyrantbrian 2 Tallied Votes 19K Views Share

Following is a matrix multiplication code written in MPI (Message Passing Interface) which could be run on CPU cluster for parallel processing. This has been successfully tested with two square matrices, each of the size 1500*1500.

/**********************************************************************************************
* Matrix Multiplication Program using MPI.
*
* Viraj Brian Wijesuriya - University of Colombo School of Computing, Sri Lanka.
* 
* Works with any type of two matrixes [A], [B] which could be multiplied to produce a matrix [c].
*
* Master process initializes the multiplication operands, distributes the muliplication 
* operation to worker processes and reduces the worker results to construct the final output.
*  
************************************************************************************************/

#include<stdio.h>
#include<mpi.h>
#define NUM_ROWS_A 12 //rows of input [A]
#define NUM_COLUMNS_A 12 //columns of input [A]
#define NUM_ROWS_B 12 //rows of input [B]
#define NUM_COLUMNS_B 12 //columns of input [B]
#define MASTER_TO_SLAVE_TAG 1 //tag for messages sent from master to slaves
#define SLAVE_TO_MASTER_TAG 4 //tag for messages sent from slaves to master
void makeAB(); //makes the [A] and [B] matrixes
void printArray(); //print the content of output matrix [C];

int rank; //process rank
int size; //number of processes
int i, j, k; //helper variables
double mat_a[NUM_ROWS_A][NUM_COLUMNS_A]; //declare input [A]
double mat_b[NUM_ROWS_B][NUM_COLUMNS_B]; //declare input [B]
double mat_result[NUM_ROWS_A][NUM_COLUMNS_B]; //declare output [C]
double start_time; //hold start time
double end_time; // hold end time
int low_bound; //low bound of the number of rows of [A] allocated to a slave
int upper_bound; //upper bound of the number of rows of [A] allocated to a slave
int portion; //portion of the number of rows of [A] allocated to a slave
MPI_Status status; // store status of a MPI_Recv
MPI_Request request; //capture request of a MPI_Isend

int main(int argc, char *argv[])
{

    MPI_Init(&argc, &argv); //initialize MPI operations
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); //get the rank
    MPI_Comm_size(MPI_COMM_WORLD, &size); //get number of processes

    /* master initializes work*/
    if (rank == 0) {
        makeAB();
        start_time = MPI_Wtime();
        for (i = 1; i < size; i++) {//for each slave other than the master
            portion = (NUM_ROWS_A / (size - 1)); // calculate portion without master
            low_bound = (i - 1) * portion;
            if (((i + 1) == size) && ((NUM_ROWS_A % (size - 1)) != 0)) {//if rows of [A] cannot be equally divided among slaves
                upper_bound = NUM_ROWS_A; //last slave gets all the remaining rows
            } else {
                upper_bound = low_bound + portion; //rows of [A] are equally divisable among slaves
            }
            //send the low bound first without blocking, to the intended slave
            MPI_Isend(&low_bound, 1, MPI_INT, i, MASTER_TO_SLAVE_TAG, MPI_COMM_WORLD, &request);
            //next send the upper bound without blocking, to the intended slave
            MPI_Isend(&upper_bound, 1, MPI_INT, i, MASTER_TO_SLAVE_TAG + 1, MPI_COMM_WORLD, &request);
            //finally send the allocated row portion of [A] without blocking, to the intended slave
            MPI_Isend(&mat_a[low_bound][0], (upper_bound - low_bound) * NUM_COLUMNS_A, MPI_DOUBLE, i, MASTER_TO_SLAVE_TAG + 2, MPI_COMM_WORLD, &request);
        }
    }
    //broadcast [B] to all the slaves
    MPI_Bcast(&mat_b, NUM_ROWS_B*NUM_COLUMNS_B, MPI_DOUBLE, 0, MPI_COMM_WORLD);

    /* work done by slaves*/
    if (rank > 0) {
        //receive low bound from the master
        MPI_Recv(&low_bound, 1, MPI_INT, 0, MASTER_TO_SLAVE_TAG, MPI_COMM_WORLD, &status);
        //next receive upper bound from the master
        MPI_Recv(&upper_bound, 1, MPI_INT, 0, MASTER_TO_SLAVE_TAG + 1, MPI_COMM_WORLD, &status);
        //finally receive row portion of [A] to be processed from the master
        MPI_Recv(&mat_a[low_bound][0], (upper_bound - low_bound) * NUM_COLUMNS_A, MPI_DOUBLE, 0, MASTER_TO_SLAVE_TAG + 2, MPI_COMM_WORLD, &status);
        for (i = low_bound; i < upper_bound; i++) {//iterate through a given set of rows of [A]
            for (j = 0; j < NUM_COLUMNS_B; j++) {//iterate through columns of [B]
                for (k = 0; k < NUM_ROWS_B; k++) {//iterate through rows of [B]
                    mat_result[i][j] += (mat_a[i][k] * mat_b[k][j]);
                }
            }
        }
        //send back the low bound first without blocking, to the master
        MPI_Isend(&low_bound, 1, MPI_INT, 0, SLAVE_TO_MASTER_TAG, MPI_COMM_WORLD, &request);
        //send the upper bound next without blocking, to the master
        MPI_Isend(&upper_bound, 1, MPI_INT, 0, SLAVE_TO_MASTER_TAG + 1, MPI_COMM_WORLD, &request);
        //finally send the processed portion of data without blocking, to the master
        MPI_Isend(&mat_result[low_bound][0], (upper_bound - low_bound) * NUM_COLUMNS_B, MPI_DOUBLE, 0, SLAVE_TO_MASTER_TAG + 2, MPI_COMM_WORLD, &request);
    }

    /* master gathers processed work*/
    if (rank == 0) {
        for (i = 1; i < size; i++) {// untill all slaves have handed back the processed data
            //receive low bound from a slave
            MPI_Recv(&low_bound, 1, MPI_INT, i, SLAVE_TO_MASTER_TAG, MPI_COMM_WORLD, &status);
            //receive upper bound from a slave
            MPI_Recv(&upper_bound, 1, MPI_INT, i, SLAVE_TO_MASTER_TAG + 1, MPI_COMM_WORLD, &status);
            //receive processed data from a slave
            MPI_Recv(&mat_result[low_bound][0], (upper_bound - low_bound) * NUM_COLUMNS_B, MPI_DOUBLE, i, SLAVE_TO_MASTER_TAG + 2, MPI_COMM_WORLD, &status);
        }
        end_time = MPI_Wtime();
        printf("\nRunning Time = %f\n\n", end_time - start_time);
        printArray();
    }
    MPI_Finalize(); //finalize MPI operations
    return 0;
}

void makeAB()
{
    for (i = 0; i < NUM_ROWS_A; i++) {
        for (j = 0; j < NUM_COLUMNS_A; j++) {
            mat_a[i][j] = i + j;
        }
    }
    for (i = 0; i < NUM_ROWS_B; i++) {
        for (j = 0; j < NUM_COLUMNS_B; j++) {
            mat_b[i][j] = i*j;
        }
    }
}

void printArray()
{
    for (i = 0; i < NUM_ROWS_A; i++) {
        printf("\n");
        for (j = 0; j < NUM_COLUMNS_A; j++)
            printf("%8.2f  ", mat_a[i][j]);
    }
    printf("\n\n\n");
    for (i = 0; i < NUM_ROWS_B; i++) {
        printf("\n");
        for (j = 0; j < NUM_COLUMNS_B; j++)
            printf("%8.2f  ", mat_b[i][j]);
    }
    printf("\n\n\n");
    for (i = 0; i < NUM_ROWS_A; i++) {
        printf("\n");
        for (j = 0; j < NUM_COLUMNS_B; j++)
            printf("%8.2f  ", mat_result[i][j]);
    }
    printf("\n\n");
}
Adak 419 Nearly a Posting Virtuoso

Very interesting Brian, thanks for sharing! ;)

And welcome to the forum. :)

akvdub 0 Newbie Poster

hi when i ran the above code , i am getting the ouput as a NULL matrix.

Any ideas where i went wrong

parallel 0 Newbie Poster

I am trying to multiply two matrices of 1000x1000 size. I connected to grid lab and when I increased the number of processes, the time is also increasing which is not the case that we want. So how can we optimize this code to work efficiently when I increase the number of processes?

sanketh2531991 0 Newbie Poster

Hi
I am new to this MPI programming with C++.
I want to make A and B two matrics of 512 * 512 entries ? How can I make it ?

Gustavo_4 0 Newbie Poster

Hi!
My university has a cluster and i'm working on it. Your code is well commented and easy to understand, but don't run very well in the cluster. The matrix resultant calculate in cluster is wrong, because most of the elements is zero. Would you help me?

Be a part of the DaniWeb community

We're a friendly, industry-focused community of developers, IT pros, digital marketers, and technology enthusiasts meeting, networking, learning, and sharing knowledge.