PEP8 Quadratic Equations Solver

TrustyTony 0 Tallied Votes 1K Views Share

This is hopefully example of properly tested code snippet (fingers crossed).

#!/bin/env python
"""Quadratic equation solver

PEP8 checked with pep8 --show-source --show-pep8
Takes care of also complex multipliers and zero multiplier corner cases.

by Tony Veijalainen 2011, Freeware (Creative Commons attribution licence)

"""

from __future__ import print_function, division
from cmath import *


delta = 1e-9


def solve_quadratic(a, b, c):
    """ a * x **2 + b * x + c solutions
        solves solve_quadraticratic equations

    """
    if not a:
        print('Warning! No second order term in solve_quadratic function.')
        return (-c / b,) if b != 0 else (float('inf'),) if c == 0 else (0 / 0,)
    discriminant = (b ** 2) - 4 * a * c
    # print(discriminant) # debug
    if type(discriminant) == type(0 + 1j) or discriminant < 0:
        return ((-b + sqrt(discriminant)) / (2 * a),
                (-b - sqrt(discriminant)) / (2 * a))
    elif  discriminant > 0:
        return (((-b + sqrt(discriminant)) / (2 * a)).real,
                ((-b - sqrt(discriminant)) / (2 * a)).real)
    else:
        return -b / (2 * a),  # comma -> singleton tuple

if __name__ == '__main__':
    for vals in ((2, 4, -30), (1, 3, 4), (1, 9, 4),
                 (1, -4, -2), (3, 0, 7), (1, 0, -9),
                 (3 + 5j, 6 + 8j, 2 + 9j),
                 (0, 3, -5), (0, 0, -4), (0, 0, 0)):
        test = solve_quadratic
        print(40 * '-')
        print()
        print('Testing function %r' % test.__name__)
        try:
            solutions = test(*vals)
        except ZeroDivisionError:
            print('No solutions for %s == 0' % (vals[-1],))
        else:
            for solution in solutions:
                a, b, c = vals
                print(vals, 'solution', solution)
                if solution == float('inf'):
                    print('Equation allways true!')
                else:
                    print('%s < %g' %
                          ((a * (solution ** 2) + b * solution + c), delta))
                    assert abs(a * (solution ** 2) + b * solution + c) < delta
TrustyTony 888 ex-Moderator Team Colleague Featured Poster

Anybody has drawn picture of x**2 in complex numbers domain? Just curious.

TrustyTony 888 ex-Moderator Team Colleague Featured Poster

Using color for one coordinate was best I could find:
http://mpmath.googlecode.com/svn/gallery/gallery.html

raptr_dflo 48 Posting Pro

tonyjv, nice images there. For what it's worth, converting to polar coordinates is interesting:
If A = (a + bi) = (a, b) = (R, theta)
where R = sqrt(a^2 + b^2) and theta = atan2(b, a)
(and thus, a = R*cos(theta) and b = R*sin(theta))
then A^2 = (R^2, 2*theta)

Be a part of the DaniWeb community

We're a friendly, industry-focused community of developers, IT pros, digital marketers, and technology enthusiasts meeting, networking, learning, and sharing knowledge.