Got inspired to make computer to make moves in English Solitaire, I learned in childhood days to solve by myself consistently, no solving or game play interface at the moment (easy to add though).
I added printing of the ready solution from the wikipedia, also maybe of your interest are the function for columnar printing (not quite general as it expects exactly equal length lists of equal length lines) to reduce the length of printing and debug function to access multidimensional list by tuple (or other iterable) co-ordinates.
Output:
Board style
a b c
d e f
g h i j k l m
n o p x P O N
M L K J I H G
F E D
C B A
Board middle empty
a b c
d e f
g h i j k l m
n o p . P O N
M L K J I H G
F E D
C B A
Possible moves
ejx
a b c
d . f
g h i . k l m
n o p x P O N
M L K J I H G
F E D
C B A
Pieces left: 32
Next moves available:
hij, Jxj, lkj
opx
a b c
d e f
g h i j k l m
n . . x P O N
M L K J I H G
F E D
C B A
Pieces left: 32
Next moves available:
dip, FKp, Pxp
EJx
a b c
d e f
g h i j k l m
n o p x P O N
M L K . I H G
F . D
C B A
Pieces left: 32
Next moves available:
jxJ, LKJ, HIJ
OPx
a b c
d e f
g h i j k l m
n o p x . . N
M L K J I H G
F E D
C B A
Pieces left: 32
Next moves available:
fkP, pxP, DIP
ejx lkj cfk Pkf
a b c a b c a b . a b .
d . f d . f d . . d . f
g h i . k l m g h i j . . m g h i j k . m g h i j . . m
n o p x P O N n o p x P O N n o p x P O N n o p x . O N
M L K J I H G M L K J I H G M L K J I H G M L K J I H G
F E D F E D F E D F E D
C B A C B A C B A C B A
DIP GHI JIH mNG
a b . a b . a b . a b .
d . f d . f d . f d . f
g h i j . . m g h i j . . m g h i j . . m g h i j . . .
n o p x P O N n o p x P O N n o p x P O N n o p x P O .
M L K J . H G M L K J I . . M L K . . H . M L K . . H G
F E . F E . F E . F E .
C B A C B A C B A C B A
GHI ijk ghi LKJ
a b . a b . a b . a b .
d . f d . f d . f d . f
g h i j . . . g h . . k . . . . i . k . . . . i . k . .
n o p x P O . n o p x P O . n o p x P O . n o p x P O .
M L K . I . . M L K . I . . M L K . I . . M . . J I . .
F E . F E . F E . F E .
C B A C B A C B A C B A
JIH HOl lkj jih
a b . a b . a b . a b .
d . f d . f d . f d . f
. . i . k . . . . i . k l . . . i j . . . . h . . . . .
n o p x P O . n o p x P . . n o p x P . . n o p x P . .
M . . . . H . M . . . . . . M . . . . . . M . . . . . .
F E . F E . F E . F E .
C B A C B A C B A C B A
CFK pKF ABC CFK
a b . a b . a b . a b .
d . f d . f d . f d . f
. h . . . . . . h . . . . . . h . . . . . . h . . . . .
n o p x P . . n o . x P . . n o . x P . . n o . x P . .
M . K . . . . M . . . . . . M . . . . . . M . K . . . .
. E . F E . F E . . E .
. B A . B A C . . . . .
Mng ghi abc cfk
a b . a b . . . c . . .
d . f d . f d . f d . .
g h . . . . . . . i . . . . . . i . . . . . . i . k . .
. o . x P . . . o . x P . . . o . x P . . . o . x P . .
. . K . . . . . . K . . . . . . K . . . . . . K . . . .
. E . . E . . E . . E .
. . . . . . . . . . . .
kPI dip pKF FED
. . . . . . . . . . . .
d . . . . . . . . . . .
. . i . . . . . . . . . . . . . . . . . . . . . . . . .
. o . x . . . . o p x . . . . o . x . . . . o . x . . .
. . K . I . . . . K . I . . . . . . I . . . . . . I . .
. E . . E . F E . . . D
. . . . . . . . . . . .
DIP Pxp opx
. . . . . . . . .
. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. o . x P . . . o p . . . . . . . x . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .
. . . . . . . . .