Obviously, here is the initial code for this blackjack game. and in order for me to feel confident in this game I need to have an error check to make sure that there are at least 7 cards per player. And I have to do this in the second part of code listed below (cards).
# Blackjack
# From 1 to 7 players compete against a dealer
import cards, games
class BJ_Card(cards.Card):
""" A Blackjack Card. """
ACE_VALUE = 1
def get_value(self):
if self.is_face_up:
value = BJ_Card.RANKS.index(self.rank) + 1
if value > 10:
value = 10
else:
value = None
return value
value = property(get_value)
class BJ_Deck(cards.Deck):
""" A Blackjack Deck. """
def populate(self):
for suit in BJ_Card.SUITS:
for rank in BJ_Card.RANKS:
self.cards.append(BJ_Card(rank, suit))
class BJ_Hand(cards.Hand):
""" A Blackjack Hand. """
def __init__(self, name):
super(BJ_Hand, self).__init__()
self.name = name
def __str__(self):
rep = self.name + ":\t" + super(BJ_Hand, self).__str__()
if self.total:
rep += "(" + str(self.total) + ")"
return rep
def get_total(self):
# if a card in the hand has value of None, then total is None
for card in self.cards:
if not card.value:
return None
# add up card values, treat each Ace as 1
total = 0
for card in self.cards:
total += card.value
# determine if hand contains an Ace
contains_ace = False
for card in self.cards:
if card.value == BJ_Card.ACE_VALUE:
contains_ace = True
# if hand contains Ace and total is low enough, treat Ace as 11
if contains_ace and total <= 11:
# add only 10 since we've already added 1 for the Ace
total += 10
return total
total = property(get_total)
def is_busted(self):
return self.total > 21
class BJ_Player(BJ_Hand):
""" A Blackjack Player. """
def is_hitting(self):
response = games.ask_yes_no("\n" + self.name + ", do you want a hit? (Y/N): ")
return response == "y"
def bust(self):
print self.name, "busts."
self.lose()
def lose(self):
print self.name, "loses."
def win(self):
print self.name, "wins."
def push(self):
print self.name, "pushes."
class BJ_Dealer(BJ_Hand):
""" A Blackjack Dealer. """
def is_hitting(self):
return self.total < 17
def bust(self):
print self.name, "busts."
def flip_first_card(self):
first_card = self.cards[0]
first_card.flip()
class BJ_Game(object):
""" A Blackjack Game. """
def __init__(self, names):
self.players = []
for name in names:
player = BJ_Player(name)
self.players.append(player)
self.dealer = BJ_Dealer("Dealer")
self.deck = BJ_Deck()
self.deck.populate()
self.deck.shuffle()
def get_still_playing(self):
remaining = []
for player in self.players:
if not player.is_busted():
remaining.append(player)
return remaining
# list of players still playing (not busted) this round
still_playing = property(get_still_playing)
def __additional_cards(self, player):
while not player.is_busted() and player.is_hitting():
self.deck.deal([player])
print player
if player.is_busted():
player.bust()
def play(self):
# deal initial 2 cards to everyone
self.deck.deal(self.players + [self.dealer], per_hand = 2)
self.dealer.flip_first_card() # hide dealer's first card
for player in self.players:
print player
print self.dealer
# deal additional cards to players
for player in self.players:
self.__additional_cards(player)
self.dealer.flip_first_card() # reveal dealer's first
if not self.still_playing:
# since all players have busted, just show the dealer's hand
print self.dealer
else:
# deal additional cards to dealer
print self.dealer
self.__additional_cards(self.dealer)
if self.dealer.is_busted():
# everyone still playing wins
for player in self.still_playing:
player.win()
else:
# compare each player still playing to dealer
for player in self.still_playing:
if player.total > self.dealer.total:
player.win()
elif player.total < self.dealer.total:
player.lose()
else:
player.push()
# remove everyone's cards
for player in self.players:
player.clear()
self.dealer.clear()
def main():
print "\t\tWelcome to Blackjack!\n"
names = []
number = games.ask_number("How many players? (1 - 7): ", low = 1, high = 8)
for i in range(number):
name = raw_input("Enter player name: ")
names.append(name)
print
game = BJ_Game(names)
again = None
while again != "n":
game.play()
again = games.ask_yes_no("\nDo you want to play again?(Y/N): ")
main()
raw_input("\n\nPress the enter key to exit.")
Second part of code is below.
# Cards Module
# Basic classes for a game with playing cards
class Card(object):
""" A playing card. """
RANKS = ["A", "2", "3", "4", "5", "6", "7",
"8", "9", "10", "J", "Q", "K"]
SUITS = ["c", "d", "h", "s"]
def __init__(self, rank, suit, face_up = True):
self.rank = rank
self.suit = suit
self.is_face_up = face_up
def __str__(self):
if self.is_face_up:
rep = self.rank + self.suit
else:
rep = "XX"
return rep
def flip(self):
self.is_face_up = not self.is_face_up
class Hand(object):
""" A hand of playing cards. """
def __init__(self):
self.cards = []
def __str__(self):
if self.cards:
rep = ""
for card in self.cards:
rep += str(card) + "\t"
else:
rep = "<empty>"
return rep
def clear(self):
self.cards = []
def add(self, card):
self.cards.append(card)
def give(self, card, other_hand):
self.cards.remove(card)
other_hand.add(card)
class Deck(Hand):
""" A deck of playing cards. """
def populate(self):
for suit in Card.SUITS:
for rank in Card.RANKS:
self.add(Card(rank, suit))
def shuffle(self):
import random
random.shuffle(self.cards)
def deal(self, hands, per_hand = 1):
for rounds in range(per_hand):
for hand in hands:
if self.cards:
top_card = self.cards[0]
self.give(top_card, hand)
else:
print "Can't continue deal. Out of cards!"
if __name__ == "__main__":
print "This is a module with classes for playing cards."
raw_input("\n\nPress the enter key to exit.")
Should I write something like:
def check_cards(self, hands):
if self.Card == 7:
##something to make the code keep going
else:
##clear deck
##repopulate
##reshuffle
or should I implement that sort of code in the def deal?