I've been looking for a way to work with polynomials using python, did someone already wrote a code to do that?.

Here's what i have until now using dictionaries as polynomials -for example: x^4-6x^2+1 would be {4:1, 2:-6, 0:1}-, someone have any suggestion to make?

def degree(f):
    t = sorted(f.keys())
    if len(t)!=0:
        r = t[len(t)-1]
    else:
        r=0
    return r

def get_sum(r,s,g):
    result = {}
    while (g>=0):
        try:
            x = r[g]
        except:
            x = 0
        try:
            y = s[g]
        except:
            y = 0

        if( (x+y)!= 0):
            result[g] = x+y
        g-=1
    return result

def add(p,q):
    if( degree(p) > degree(q) ):
        suma = get_sum(p,q, degree(p))
    else:
        suma = get_sum(p,q, degree(q))

    return suma

def product(p,q):
    product_r = {}
    if ( degree(p) >= degree(q) ):
        t = degree(p)
    else:
        t = degree(q)
    m = t
    n = t
    while ( m>=0 ):
        while( n>= 0 ):
            try:
                r = p[m]*q[n]
            except:
                r = 0

            try:
                s = product_r[m+n]
            except:
                s = 0

            if( (r+s)!= 0 ):
                product_r[m+n] = r+s
            else:
                try:
                    del product_r[m+n]
                except:
                    pass
            n-= 1
        n = t
        m-=1
    return product_r

def degreeiation(p,n):
    if n!=0:
        t = p
        while (n>1):
            t = product(t,p)
            n-=1
    else:
        t={0:1}
    return t

def division(p,q):
    pol = {}
    if degree(q)!= 0:
        r = p[degree(p)]/q[degree(q)]
        pol[degree(p)-degree(q)] = r
        n_p = product(product(pol,q),{0:-1})
        p = add(p,n_p)
    else:
        pol = product(p,q[degree(q)])
        p = 0
    if len(p)== 0:
        p[0]=0

    return p,pol

def divide(p,q):
    cociente = {}
    if degree(p)>=degree(q):
        while degree(p)>=degree(q):
            qt = division(p,q)
            p = qt[0]
            cociente.update(qt[1])
    else:
        cociente = {0:0}
    return cociente

def remainder(p,q):
    if degree(p)>=degree(q):
        while degree(p)>=degree(q):
            qt=division(p,q)
            p = qt[0]
    else:
        pass
    return p

def evaluar(p,x):
    s = {0:0}
    variables = sorted(p.keys())
    for i in variables:
        a = {0:p[i]}
        b = degreeiation({0:x},i)
        c = product(a,b)
        s = add(product({0:p[i]},degreeiation({0:x},i)),s)
    try:
        r= s[0]
    except:
        r=0
    return r

def simplificar(p):
    keys_p = sorted(p.keys())
    values = []
    divisor = []
    for i in keys_p:
        values.append(p[i])
        values = sorted(values)
        i = values[-1]
        while i>0:
            div_temp=[]
            for j in keys_p:
                r = p[j]%i

                if r==0:
                    div_temp.append(0)
                else:
                    div_temp.append(1)
            if 0 in div_temp:
                divisor.append(i)
            i-=1
    values = sorted(values)

    result = product(p,{0:Racional(1,values[-1])})

    if result[sorted(result.keys())[-1]] < 0:
        for i in result.keys():
            result[i] = result[i]*(-1)
    return Polynomial(result)

def verif(remainder):
    try:
        if len(remainder.polynomial) == 1:
            if remainder.degree() == 0:
                test = [False,remainder.polynomial]
            else:
                test = [True]
        else:
            test = True
    except:
        try:
            a = remainder.polynomial
            test = [True]
        except:
            test = [False,remainder.polynomial]
    return test

class Polynomial(object):
    def __init__(self, polynomial):
        self.polynomial = polynomial

    def __repr__(self):
        try:
            keys = self.polynomial.keys()
            keys.reverse()
            pol = ''
            for i in keys:
                if i!=0:
                    if self.polynomial[i]>0:
                        pol+='  '+str(self.polynomial[i])+'X^'+str(i)
                    else:
                        pol+='  '+str(self.polynomial[i])+'X^'+str(i)
                else:
                    if self.polynomial[i]>0:
                        pol+= ' + '+str(self.polynomial[i])
                    else:
                        pol=pol+'  '+str(self.polynomial[i])

            if pol.startswith(' '):
                pol = pol[2:]
            else:
                pass
        except:
            pol = str(self.polynomial)
        return pol

    def __add__(self, other):
        return Polynomial(add(self.polynomial, other.polynomial))

    __radd__ = __add__

    def degree(self):
        return degree(self.polynomial)

    def __mul__(self, other):
        return Polynomial(product(self.polynomial, other.polynomial))

    __rmul__ = __mul__


    def __sub__(self,other):
        r_pol = {}
        r_o = {}
        keys_s = self.polynomial.keys()
        keys_s.extend(other.polynomial.keys())
        keys_s = list(set(keys_s))
        for i in other.polynomial.keys():
            r_o[i] = (-1)*other.polynomial[i]

        for i in keys_s:
            r_pol[i] = self.polynomial[i] + r_o[i]

        return r_pol

    def __rsub__(self, other):
        r_pol = {}
        r_o = {}
        keys_s = self.polynomial.keys()
        keys_s.extend(other.polynomial.keys())
        keys_s = list(set(keys_s))
        for i in self.polynomial.keys():
            r_o[i] = (-1)*self.polynomial[i]

        for i in keys_s:
            r_pol[i] = other.polynomial[i] + r_o[i]
        return r_pol


        return result
    def __div__(self, other):
        return Polynomial(divide(self.polynomial, other.polynomial))

    def __pow__(self,n):
        return Polynomial(degreeiation(self.polynomial,n))

    def __getitem__(self,i):
        return Polynomial(evaluar(self.polynomial,i))

    def __eq__(self,other):
        keys_self = self.polynomial.keys()
        keys_other = other.polynomial.keys()
        keys_self.extend(keys_other)
        l_key = keys_self[-1]
        while l_key >= 0:
            try:
                if self.polynomial[l_key] == other.polynomial[l_key]:
                    r = True
                    l_key-=1
                else:
                    r = False
                    l_key = -1
            except:
                r = False
                l_key = -1
        return r

    def __ne__(self, other):
        if (self==other) == True:
            return False
        else:
            return True         


    def __mod__(self, other):
        return Polynomial(remainder(self.polynomial, other.polynomial))

    def mcd(self, other):
        divisor = []
        remainder_s = []
        remainder = self%other

        try:
            if verif(remainder)[0] == False:
                remainder_s.append(verif(remainder)[1])
                test = False
        except:
            test = True

        while test :
            rmax_exp = int(sorted(remainder.polynomial.keys())[-1])
            omax_exp = int(sorted(other.polynomial.keys())[-1])
            remainder = simplificar(remainder.polynomial)

            if other.polynomial[omax_exp] % int(remainder.polynomial[rmax_exp]) == 0:
                remainder_s.append(remainder.polynomial)
                remainder = other % remainder
                test = verif(remainder)[0]
                if test == False:
                    remainder_s.append(verif(remainder)[1])
                print test
            else:
                print 'hey'
                test = False


        try:
            remainder_f = remainder_s[-1]
            if  remainder_f[0] == 0:
                mcd = remainder_s[-2]
            else:
                mcd = 1
        except:
            mcd = other



        return remainder_s

Related article is my code on subject which got me price in summer code snippet competition, you can compare with that.

Be a part of the DaniWeb community

We're a friendly, industry-focused community of developers, IT pros, digital marketers, and technology enthusiasts meeting, networking, learning, and sharing knowledge.