I'm not really good wih the Big O notation so I was wondering if any one can help me find the Big O notation of this code for each of its function when they are best , worst, and adverage case and a brief explantation of why it's that. Sorry if the code is long and thank you for takening your time to look at this code. Don't need to look at def main

class Polynomial(object):
    """self.a[0] is the constant term.
    self.a[self.n] is the coefficient of the highest degree
    if reverse is True assign reverse of c to self.a"""

    def __init__(self, c, reverse = False):
        if type(c)==type(1) or type(c)==type(1.1):
            #coefficient c is only a number, constant polynomial
            self.a = [c]
            self.n = 0
        elif type(c)==type([]):
            if (not reverse):
                self.a = [b for b in c]
            else:
                self.a = []
                k = len(c) - 1
                for i in range(len(c)):
                    self.a.append(c[k - i])
            self.normalize()
        else:
            self.a = [0]
            self.n = 0

    def normalize(self):
        """delete leading zeros of a polynomial"""
        k = len(self.a) - 1
        while k > 0 and self.a[k] == 0:
            self.a.pop()
            k -= 1
        self.a = self.a[0:k+1]#including 0, excluding k+1
        self.n = len(self.a) - 1

    def add(self, p):
        aa = []
        k = 0
        while k < len(self.a) and k < len(p.a):
            aa.append(self.a[k] + p.a[k])
            k += 1
        while k < len(self.a):#self.n is bigger than p.n
            aa.append(self.a[k])
            k += 1
        while k < len(p.a):
            aa.append(p.a[k])
            k += 1
        return Polynomial(aa)

    def negative(self):
        aa = [-b for b in self.a]
        return Polynomial(aa)

    def subtract(self, p):
        return self.add(p.negative())

    def derivative(self):
        aa = []
        for i in range(1, len(self.a)):
            aa.append(i * self.a[i])
        return Polynomial(aa)

    def getDegree(self):
        return self.n

    def integral(self):
        aa = []
        aa.append(0)# for constant term
        for i in range(len(self.a)):
            aa.append(self.a[i]/(i+1.0))
        return Polynomial(aa)

    def multiply(self, p):
        aa = [0 for i in range(self.n + p.n + 1)]
        for i in range(len(self.a)):
            for j in range(len(p.a)):
                aa[i+j] += self.a[i] * p.a[j]
        return Polynomial(aa)

    def __str__(self):
        if (self.n == 0):
            return str(self.a[0])
        s = "Degree " + str(self.n) + ":"
        k = self.n
        leftMost = True
        for i in range(self.n + 1):
            if self.a[k] == 0:
                k -= 1
                continue
            s += " "
            if ((not leftMost) and self.a[k] > 0):
                s += "+ "
            if self.a[k] < 0:
                s += "- "
                if (self.a[k] != -1) or (k == 0):
                    s += str(-self.a[k])
            elif (self.a[k] != 1) or (k == 0):
                s += str(self.a[k])
            if (k >= 1):
                s += "x"
            if (k >= 2):
                s += "^" + str(k)
            k -= 1
            leftMost = False
        return s

    def power(self, n):
        tmp = Polynomial(self.a)
        for i in range(n-1):    tmp = self.multiply(tmp)
        return tmp

    #operator overloading
    def __add__(self, p):
        if type(p) == type(1) or type(p) == type(1.1):
            return self.add(Polynomial(p))
        if type(p) == type(self):
            return self.add(p)
        return self

    def __sub__(self, p):
        if type(p) == type(1) or type(p) == type(1.1):
            return self.subtract(Polynomial(p))
        if type(p) == type(self):
            return self.subtract(p)
        return self

    def __mul__(self, p):
        if type(p) == type(1) or type(p) == type(1.1):
            return self.multiply(Polynomial(p))
        if type(p) == type(self):
            return self.multiply(p)
        return self

    def __neg__(self):
        return self.negative()

def main():
    p1 = Polynomial([0,5,4,3,2,1], True)
    print "p1:  " + str(p1)
    print "p1.negative() " + str(p1.negative())

    p2 = Polynomial([-2,3,4])
    print "p2:  " + str(p2)
    print "p1+P2:   " + str(p1.add(p2))
    print "p1-P2:   " + str(p1.subtract(p2))
    print "p1*P2:   " + str(p1.multiply(p2))
    print "p2+25:   " + str(p2+25)

    p3 = Polynomial([1,1])
    print "p3:  " + str(p3)
    print "p3*P3*p3:    " + str(p3*p3*p3)
    print "p3^4 " + str(p3.power(4))

if __name__ == '__main__':
    main()

You forgot your effort for finding the answer.

Be a part of the DaniWeb community

We're a friendly, industry-focused community of developers, IT pros, digital marketers, and technology enthusiasts meeting, networking, learning, and sharing knowledge.