I need help... I want to parallelize the MD5 algorithm using OpenMP in C++.
ziadkassam 0 Newbie Poster
CGSMCMLXXV 5 Junior Poster in Training
Have you tried anything by now? If yes, could you show us what you did and where you got stuck?
ziadkassam 0 Newbie Poster
I want a more efficient code than this. I want to use the nested directive..
I want to parallelize the (for) loops in the Encode and Decode functions.
md5.cpp:
#include <omp.h>
#include <assert.h>
#include <memory.h>
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
#include "md5.h"
static unsigned char PADDING[64] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21
// PrintMD5: Converts a completed md5 digest into a char* string.
char* PrintMD5(uchar md5Digest[16])
{
char chBuffer[256];
char chEach[10];
int nCount;
memset(chBuffer,0,256);
memset(chEach, 0, 10);
for (nCount = 0; nCount < 16; nCount++)
{
sprintf(chEach, "%02x", md5Digest[nCount]);
strncat(chBuffer, chEach, sizeof(chEach));
}
return strdup(chBuffer);
}
// MD5String: Performs the MD5 algorithm on a char* string, returning
// the results as a char*.
char* MD5String(char* szString)
{
int nLen = strlen(szString);
md5 alg;
alg.Update((unsigned char*)szString, (unsigned int)nLen);
alg.Finalize();
return PrintMD5(alg.Digest());
}
// MD5File: Performs the MD5 algorithm on a file (binar or text),
// returning the results as a char*. Returns NULL if it fails.
char* MD5File(char* szFilename)
{
FILE* file;
md5 alg;
int nLen;
unsigned char chBuffer[1024];
try
{
memset(chBuffer, 0, 1024);
if ((file = fopen (szFilename, "rb")) != NULL)
{
while (nLen = fread (chBuffer, 1, 1024, file))
alg.Update(chBuffer, nLen);
alg.Finalize();
fclose (file);
return PrintMD5(alg.Digest());
}
}
catch(...)
{
}
return NULL; // failed
}
// md5::Init
// Initializes a new context.
void md5::Init()
{
memset(m_Count, 0, 2 * sizeof(uint4));
m_State[0] = 0x67452301;
m_State[1] = 0xefcdab89;
m_State[2] = 0x98badcfe;
m_State[3] = 0x10325476;
}
// md5::Update
// MD5 block update operation. Continues an MD5 message-digest
// operation, processing another message block, and updating the
// context.
void md5::Update(uchar* chInput, uint4 nInputLen)
{
int i, index, partLen;
int nIL=nInputLen, chunk=10;
// Compute number of bytes mod 64
index = (unsigned int)((m_Count[0] >> 3) & 0x3F);
// Update number of bits
if ((m_Count[0] += (nInputLen << 3)) < (nInputLen << 3))
m_Count[1]++;
m_Count[1] += (nInputLen >> 29);
partLen = 64 - index;
// Transform as many times as possible.
if (nInputLen >= partLen)
{
memcpy( &m_Buffer[index], chInput, partLen );
Transform(m_Buffer);
i=partLen;
MyFunction(i,partLen,chInput,nIL);
//for (i = partLen; i+63 < nIL; i += 64)
// Transform(&chInput[i]);
index = 0;
}
else
i = 0;
// Buffer remaining input
memcpy( &m_Buffer[index], &chInput[i], nInputLen-i );
}
//MyFunction
void md5::MyFunction(int i, int partLen, uchar* chInput, int nIL)
{
omp_set_num_threads(5);
#pragma omp parallel shared(chInput, nIL, partLen)
{
#pragma omp for private(i) schedule(dynamic, 10)
for(i=partLen;i<nIL;i += 64){
Transform(&chInput[i]);
#pragma omp critical
{
if(i+63>=nIL){
nIL=i-1;
}
}
}
}
}
// md5::Finalize
// MD5 finalization. Ends an MD5 message-digest operation, writing
// the message digest and zeroizing the context.
void md5::Finalize()
{
uchar bits[8];
uint4 index, padLen;
#pragma omp sections
{
#pragma omp section
{
// Save number of bits
Encode (bits, m_Count, 8);
}
#pragma omp section
{
// Pad out to 56 mod 64
index = (unsigned int)((m_Count[0] >> 3) & 0x3f);
padLen = (index < 56) ? (56 - index) : (120 - index);
Update(PADDING, padLen);
}
}
// Append length (before padding)
Update (bits, 8);
// Store state in digest
Encode (m_Digest, m_State, 16);
memset(m_Count, 0, 2 * sizeof(uint4));
memset(m_State, 0, 4 * sizeof(uint4));
memset(m_Buffer,0, 64 * sizeof(uchar));
}
// md5::Transform
// MD5 basic transformation. Transforms state based on block.
void md5::Transform (uchar* block)
{
uint4 a = m_State[0], b = m_State[1], c = m_State[2], d = m_State[3], x[16];
//omp_set_num_threads(4);
#pragma omp sections
{
#pragma omp section
{
Decode (x, block, 64);
}
#pragma omp section
{
// Round 1
FF (a, b, c, d, x[ 0], S11, 0xd76aa478);
FF (d, a, b, c, x[ 1], S12, 0xe8c7b756);
FF (c, d, a, b, x[ 2], S13, 0x242070db);
FF (b, c, d, a, x[ 3], S14, 0xc1bdceee);
FF (a, b, c, d, x[ 4], S11, 0xf57c0faf);
FF (d, a, b, c, x[ 5], S12, 0x4787c62a);
FF (c, d, a, b, x[ 6], S13, 0xa8304613);
FF (b, c, d, a, x[ 7], S14, 0xfd469501);
FF (a, b, c, d, x[ 8], S11, 0x698098d8);
FF (d, a, b, c, x[ 9], S12, 0x8b44f7af);
FF (c, d, a, b, x[10], S13, 0xffff5bb1);
FF (b, c, d, a, x[11], S14, 0x895cd7be);
FF (a, b, c, d, x[12], S11, 0x6b901122);
FF (d, a, b, c, x[13], S12, 0xfd987193);
FF (c, d, a, b, x[14], S13, 0xa679438e);
FF (b, c, d, a, x[15], S14, 0x49b40821);
}
#pragma omp section
{
// Round 2
GG (a, b, c, d, x[ 1], S21, 0xf61e2562);
GG (d, a, b, c, x[ 6], S22, 0xc040b340);
GG (c, d, a, b, x[11], S23, 0x265e5a51);
GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa);
GG (a, b, c, d, x[ 5], S21, 0xd62f105d);
GG (d, a, b, c, x[10], S22, 0x2441453);
GG (c, d, a, b, x[15], S23, 0xd8a1e681);
GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8);
GG (a, b, c, d, x[ 9], S21, 0x21e1cde6);
GG (d, a, b, c, x[14], S22, 0xc33707d6);
GG (c, d, a, b, x[ 3], S23, 0xf4d50d87);
GG (b, c, d, a, x[ 8], S24, 0x455a14ed);
GG (a, b, c, d, x[13], S21, 0xa9e3e905);
GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8);
GG (c, d, a, b, x[ 7], S23, 0x676f02d9);
GG (b, c, d, a, x[12], S24, 0x8d2a4c8a);
}
#pragma omp section
{
// Round 3
HH (a, b, c, d, x[ 5], S31, 0xfffa3942);
HH (d, a, b, c, x[ 8], S32, 0x8771f681);
HH (c, d, a, b, x[11], S33, 0x6d9d6122);
HH (b, c, d, a, x[14], S34, 0xfde5380c);
HH (a, b, c, d, x[ 1], S31, 0xa4beea44);
HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9);
HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60);
HH (b, c, d, a, x[10], S34, 0xbebfbc70);
HH (a, b, c, d, x[13], S31, 0x289b7ec6);
HH (d, a, b, c, x[ 0], S32, 0xeaa127fa);
HH (c, d, a, b, x[ 3], S33, 0xd4ef3085);
HH (b, c, d, a, x[ 6], S34, 0x4881d05);
HH (a, b, c, d, x[ 9], S31, 0xd9d4d039);
HH (d, a, b, c, x[12], S32, 0xe6db99e5);
HH (c, d, a, b, x[15], S33, 0x1fa27cf8);
HH (b, c, d, a, x[ 2], S34, 0xc4ac5665);
}
#pragma omp section
{
// Round 4
II (a, b, c, d, x[ 0], S41, 0xf4292244);
II (d, a, b, c, x[ 7], S42, 0x432aff97);
II (c, d, a, b, x[14], S43, 0xab9423a7);
II (b, c, d, a, x[ 5], S44, 0xfc93a039);
II (a, b, c, d, x[12], S41, 0x655b59c3);
II (d, a, b, c, x[ 3], S42, 0x8f0ccc92);
II (c, d, a, b, x[10], S43, 0xffeff47d);
II (b, c, d, a, x[ 1], S44, 0x85845dd1);
II (a, b, c, d, x[ 8], S41, 0x6fa87e4f);
II (d, a, b, c, x[15], S42, 0xfe2ce6e0);
II (c, d, a, b, x[ 6], S43, 0xa3014314);
II (b, c, d, a, x[13], S44, 0x4e0811a1);
II (a, b, c, d, x[ 4], S41, 0xf7537e82);
II (d, a, b, c, x[11], S42, 0xbd3af235);
II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb);
II (b, c, d, a, x[ 9], S44, 0xeb86d391);
}
}
m_State[0] += a;
m_State[1] += b;
m_State[2] += c;
m_State[3] += d;
memset(x, 0, sizeof(x));
}
// md5::Encode
// Encodes input (uint4) into output (uchar). Assumes nLength is
// a multiple of 4.
void md5::Encode(uchar* dest, uint4* src, uint4 nLength)
{
uint4 i, j;
assert(nLength % 4 == 0);
for (i = 0, j = 0; j < nLength; i++, j += 4)
{
dest[j] = (uchar)(src[i] & 0xff);
dest[j+1] = (uchar)((src[i] >> 8) & 0xff);
dest[j+2] = (uchar)((src[i] >> 16) & 0xff);
dest[j+3] = (uchar)((src[i] >> 24) & 0xff);
}
}
// md5::Decode
// Decodes input (uchar) into output (uint4). Assumes nLength is
// a multiple of 4.
void md5::Decode(uint4* dest, uchar* src, uint4 nLength)
{
uint4 i, j;
int chunk=4;
assert(nLength % 4 == 0);
for (i = 0, j = 0; j < nLength; i++, j += 4)
{
dest[i] = ((uint4)src[j]) | (((uint4)src[j+1])<<8) |
(((uint4)src[j+2])<<16) | (((uint4)src[j+3])<<24);
}
}
test.cpp:
#include <stdio.h>
#include <omp.h>
#include <iostream>
using namespace std;
#include "md5.h"
int main(void)
{
int n;
double time1, time2;
time1=omp_get_wtime();
cout << "\n The MD5 of 'zzzzzz' is : ";
cout << MD5String("zzzzzz");
cout << "\n";
time2=omp_get_wtime();
cout << "\n Time: " << time2-time1;
cin >> n;
return 0;
}
md5.h:
typedef unsigned int uint4;
typedef unsigned short int uint2;
typedef unsigned char uchar;
char* PrintMD5(uchar md5Digest[16]);
char* MD5String(char* szString);
char* MD5File(char* szFilename);
class md5
{
// Methods
public:
md5() { Init(); }
void Init();
void Update(uchar* chInput, uint4 nInputLen);
void Finalize();
uchar* Digest() { return m_Digest; }
private:
void Transform(uchar* block);
void Encode(uchar* dest, uint4* src, uint4 nLength);
void Decode(uint4* dest, uchar* src, uint4 nLength);
void MyFunction(int i, int partLen, uchar* chInput, int nIL);
inline uint4 rotate_left(uint4 x, uint4 n)
{ return ((x << n) | (x >> (32-n))); }
inline uint4 F(uint4 x, uint4 y, uint4 z)
{ return ((x & y) | (~x & z)); }
inline uint4 G(uint4 x, uint4 y, uint4 z)
{ return ((x & z) | (y & ~z)); }
inline uint4 H(uint4 x, uint4 y, uint4 z)
{ return (x ^ y ^ z); }
inline uint4 I(uint4 x, uint4 y, uint4 z)
{ return (y ^ (x | ~z)); }
inline void FF(uint4& a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac)
{ a += F(b, c, d) + x + ac; a = rotate_left(a, s); a += b; }
inline void GG(uint4& a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac)
{ a += G(b, c, d) + x + ac; a = rotate_left(a, s); a += b; }
inline void HH(uint4& a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac)
{ a += H(b, c, d) + x + ac; a = rotate_left(a, s); a += b; }
inline void II(uint4& a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac)
{ a += I(b, c, d) + x + ac; a = rotate_left(a, s); a += b; }
// Data
private:
uint4 m_State[4];
uint4 m_Count[2];
uchar m_Buffer[64];
uchar m_Digest[16];
uchar m_Finalized;
};
Be a part of the DaniWeb community
We're a friendly, industry-focused community of developers, IT pros, digital marketers, and technology enthusiasts meeting, networking, learning, and sharing knowledge.