I am learning about compilers right now and search for a source code in C as my guideline to better understand how it works. I found this online from this link Click Here and the code is quite long. Even there are comments in the code, I still find it a bit difficult to trace/follow. I would appreciate it if someone can put more detailed comments in this source code to help me better understand it. Thank you very much! :)

/* A tiny BASIC interpreter */

#include "stdio.h"
#include "setjmp.h"
#include "math.h"
#include "ctype.h"
#include "stdlib.h"

#define NUM_LAB     100
#define LAB_LEN     10 
#define FOR_NEST    25
#define SUB_NEST    25
#define PROG_SIZE   10000

#define DELIMITER   1
#define VARIABLE    2
#define NUMBER      3
#define COMMAND     4
#define STRING      5
#define QUOTE       6

#define PRINT       1
#define INPUT       2
#define IF          3
#define THEN        4
#define FOR         5
#define NEXT        6
#define TO          7
#define GOTO        8
#define EOL         9
#define FINISHED    10
#define GOSUB       11
#define RETURN      12
#define END         13

char *prog;                     /* holds expression to be analyzed */
jmp_buf e_buf;                  /* hold environment for longjmp()  */

int variables[26]= {            /* 26 user variables,  A-Z */
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0
};

struct commands {               /* keyword lookup table */
    char command[20];
    char tok;
} table[] = {                   /* Commands must be entered lowercase */
    "print", PRINT,             /* in this table. */
    "input", INPUT,
    "if", IF,
    "then", THEN,
    "goto", GOTO,
    "for", FOR,
    "next", NEXT,
    "to", TO,
    "gosub", GOSUB,
    "return", RETURN,
    "end", END,
    "", END                     /* mark end of table */
};

char token[80];
char token_type, tok;

struct label {
    char name[LAB_LEN];
    char *p;                    /* points to place to go in source file*/
};
struct label label_table[NUM_LAB];

char *find_label(), *gpop();

struct for_stack {
    int var;                    /* counter variable */
    int target;                 /* target value */
    char *loc;
} fstack[FOR_NEST];             /* stack for FOR/NEXT loop */
struct for_stack fpop();

char *gstack[SUB_NEST];         /* stack for gosub */

int ftos;                       /* index to top of FOR stack */
int gtos;                       /* index to top of GOSUB stack */

void print(), scan_labels(), find_eol(), exec_goto();
void exec_if(), exec_for(), next(), fpush(), input();
void gosub(), greturn(), gpush(), label_init();
void serror(), get_exp(), putback();
void level2(), level3(), level4(), level5(), level6(), primitive();
void unary(), arith();

main(argc, argv)
int argc;
char *argv[];
{
    char in[80];
    int answer;
    char *p_buf;
    char *t;

    if (argc!=2) {
        printf("usage: run <filename>\n");
        exit(1);
    }

    /* allocate memory for the program */
    if (!(p_buf=(char *) malloc(PROG_SIZE))) {
        printf("allocation failure");
        exit(1);
    }

    /* load the program to execute */
    if (!load_program(p_buf,argv[1]))
        exit(1);

    if (setjmp(e_buf))
        exit(1);                /* initialize the long jump buffer */

    prog = p_buf;
    scan_labels();              /* find the labels in the program */
    ftos = 0;                   /* initialize the FOR stack index */
    gtos = 0;                   /* initialize the GOSUB stack index */

    do {
        token_type = get_token();
        /* check for assignment statement */
        if (token_type==VARIABLE) {
            putback();          /* return the var to the input stream */
            assignment();       /* must be assignment statement */
    }
    else                        /* is command */
        switch(tok) {
            case PRINT:
                print();
                break;
            case GOTO:
                exec_goto();
                break;
            case IF:
                exec_if();
                break;
            case FOR:
                exec_for();
                break;
            case NEXT:
                next();
                break;
            case INPUT:
                input();
                break;
            case GOSUB:
                gosub();
                break;
            case RETURN:
                greturn();
                break;
            case END:
                exit(0);
        }
    } while (tok != FINISHED);
}

/* Load a program. */
load_program(p, fname)
char *p;
char *fname;
{
    FILE *fp;
    int i=0;

    if (!(fp=fopen(fname, "rb")))
        return 0;

    i = 0;
    do {
        *p = getc(fp);
        p++;
        i++;
    } while(!feof(fp) && i<PROG_SIZE);
    *(p-2) = '\0';              /* null terminate the program */
    fclose(fp);
    return 1;
}

/* Assign a variable a value. */
assignment()
{
    int var, value;

    /* get the variable name */
    get_token();
    if (!isalpha(*token)) {
        serror(4);
        return;
    }

    var = toupper(*token)-'A';

    /* get the equals sign */
    get_token();
    if (*token!='=') {
        serror(3);
        return;
    }

    /* get the value to assign to var */
    get_exp(&value);

    /* assign the value */
    variables[var] = value;
}

/* Execute a simple version of the BASIC PRINT statement */
void print()
{
    int answer;
    int len=0, spaces;
    char last_delim;

    do {
        get_token();            /* get next list item */
        if (tok==EOL || tok==FINISHED)
            break;
    if (token_type==QUOTE) {    /* is string */
        printf(token);
        len += strlen(token);
        get_token();
    }
    else {                      /* is expression */
        putback();
        get_exp(&answer);
        get_token();
        len += printf("%d", answer);
    }
    last_delim = *token; 

    if (*token==';') {
        /* compute number of spaces to move to next tab */
        spaces = 8 - (len % 8); 
        len += spaces;          /* add in the tabbing position */
        while(spaces) {
            printf(" ");
            spaces--;
        }
    }
    else if (*token==',')       /* do nothing */;
    else if (tok!=EOL && tok!=FINISHED)
        serror(0); 
    } while (*token==';' || *token==',');

    if (tok==EOL || tok==FINISHED) {
        if (last_delim != ';' && last_delim!=',')
            printf("\n");
    }
    else
        serror(0);              /* error is not , or ; */

}

/* Find all labels. */
void scan_labels()
{
    int addr;
    char *temp;

    label_init();               /* zero all labels */
    temp = prog;                /* save pointer to top of program */

    /* if the first token in the file is a label */
    get_token();
    if (token_type==NUMBER) {
        strcpy(label_table[0].name,token);
        label_table[0].p=prog;
    }

    find_eol();
    do {     
        get_token();
        if (token_type==NUMBER) {
            addr = get_next_label(token);
            if (addr==-1 || addr==-2) {
                (addr==-1) ?serror(5):serror(6);
            }
            strcpy(label_table[addr].name, token);

            /* current point in program */
            label_table[addr].p = prog;
        }
        /* if not on a blank line, find next line */
        if (tok!=EOL)
            find_eol();
    } while(tok!=FINISHED);
    prog = temp;  /* restore to original */
}

/* Find the start of the next line. */
void find_eol()
{
    while(*prog!='\n'  && *prog!='\0')
        ++prog;
    if (*prog)
        prog++;
}

/* Return index of next free position in label array. 
   A -1 is returned if the array is full.
   A -2 is returned when duplicate label is found.
*/
get_next_label(s)
char *s;
{
    register int t;

    for (t=0;t<NUM_LAB;++t) {
        if (label_table[t].name[0]==0)
            return t;
        if (!strcmp(label_table[t].name,s))
            return -2;              /* dup */
    }

    return -1;
}

/* Find location of given label.  A null is returned if
   label is not found; otherwise a pointer to the position
   of the label is returned.
*/
char *find_label(s)
char *s;
{
    register int t;

    for (t=0; t<NUM_LAB; ++t) 
        if (!strcmp(label_table[t].name,s))
            return label_table[t].p;
    return '\0';                    /* error condition */
}

/* Execute a GOTO statement. */
void exec_goto()
{
    char *loc;

    get_token();                    /* get label to go to */
    /* find the location of the label */
    loc = find_label(token);
    if (loc=='\0')
        serror(7);                  /* label not defined */
    else
        prog=loc;                   /* start program running at that loc */
}

/* Initialize the array that holds the labels. 
   By convention, a null label name indicates that
   array position is unused.
*/
void label_init()
{
    register int t;
    for (t=0; t<NUM_LAB; ++t)
        label_table[t].name[0]='\0';
}

/* Execute an IF statement. */
void exec_if()
{
    int x , y, cond;
    char op;
    get_exp(&x);                    /* get left expression */
    get_token();                    /* get the operator */
    if (!strchr("=<>", *token)) {
        serror(0);                  /* not a legal operator */
        return;
    }
    op=*token;
    get_exp(&y);                    /* get right expression */

    /* determine the outcome */
    cond = 0;
    switch(op) {
        case '<':
            if (x<y)
                cond=1;
            break;
        case '>':
            if (x>y)
                cond=1;
            break;
        case '=':
            if (x==y)
                cond=1;
            break;
    }
    if (cond) {                     /* is true so process target of IF */
        get_token();
        if (tok!=THEN) {
            serror(8);
        return;
        }               /* else program execution starts on next line */
    }
    else
        find_eol();                 /* find start of next line */
}

/* Execute a FOR loop. */
void exec_for()
{
    struct for_stack i;
    int value;
    get_token();                    /* read the control variable */
    if (!isalpha(*token)) {
        serror(4);
    return;
    }

    i.var=toupper(*token)-'A';      /* save its index */

    get_token();                    /* read the equals sign */
    if (*token!='=') {
        serror(3);
        return;
    }

    get_exp(&value);                /* get initial value */

    variables[i.var]=value;

    get_token();
    if (tok!=TO)
        serror(9);                  /* read and discard the TO */

    get_exp(&i.target);             /* get target value */

    /* if loop can execute at least once, push info on stack */
    if (value>=variables[i.var]) { 
        i.loc = prog;
        fpush(i);
    }
    else                /* otherwise, skip loop code altogether */
        while(tok!=NEXT)
            get_token();
}

/* Execute a NEXT statement. */
void next()
{
    struct for_stack i;
    i = fpop(); /* read the loop info */
    variables[i.var]++;             /* increment control variable */
    if (variables[i.var]>i.target)
        return;                     /* all done */
    fpush(i);                       /* otherwise, restore the info */
    prog = i.loc;                   /* loop */
}

/* Push function for the FOR stack. */
void fpush(i)
struct for_stack i;
{
    if (ftos>FOR_NEST)
        serror(10);
    fstack[ftos]=i;
    ftos++;
}

struct for_stack fpop()
{
    ftos--;
    if (ftos<0)
        serror(11);
    return(fstack[ftos]);
}

/* Execute a simple form of the BASIC INPUT command */
void input()
{
    char str[80], var;
    int i;

    /* see if prompt string is present */
    get_token();
    if (token_type==QUOTE) {
        /* if so, print it and check for comma */
        printf(token);
        get_token();
        if (*token!=',')
            serror(1);
        get_token();
    }
    else
        printf("? ");               /* otherwise, prompt with / */
    var = toupper(*token)-'A';      /* get the input var */

    scanf("%d", &i);                /* read input */

    variables[var] = i;             /* store it */
}

/* Execute a GOSUB command. */
void gosub()
{
    char *loc;

    get_token();
    /* find the label to call */
    loc = find_label(token);
    if (loc=='\0')
        serror(7);                  /* label not defined */
    else {
        gpush(prog);                /* save place to return to */
        prog = loc;                 /* start program running at that loc */
    }
}

/* Return from GOSUB. */
void greturn()
{
    prog = gpop();
}

/* GOSUB stack push function. */
void gpush(s)
char *s;
{
    gtos++;
    if (gtos==SUB_NEST) {
        serror(12);
        return;
    }
    gstack[gtos]=s;
}

/* GOSUB stack pop function. */
char *gpop()
{
    if (gtos==0) {
        serror(13);
        return 0;
    }
    return(gstack[gtos--]);
}

/* Entry point into parser. */
void get_exp(result)
int *result;
{
    get_token();
    if (!*token) {
        serror(2);
        return;
    }
    level2(result);
    /* return last token read to input stream */
    putback();
}


/* display an error message */
void serror(error)
int error;
{
    static char *e[]= {   
        "syntax error", 
        "unbalanced parentheses", 
        "no expression present",
        "equals sign expected",
        "not a variable",
        "Label table full",
        "duplicate label",
        "undefined label",
        "THEN expected",
        "TO expected",
        "too many nested FOR loops",
        "NEXT without FOR",
        "too many nested GOSUBs",
        "RETURN without GOSUB"
    }; 
    printf("%s\n", e[error]); 
    longjmp(e_buf, 1);              /* return to save point */
}

/* Get a token. */
get_token()
{
    register char *temp;
    token_type=0; tok=0;
    temp=token;
    if (*prog=='\0') {              /* end of file */
        *token=0;
        tok = FINISHED;
        return(token_type=DELIMITER);
    }
    while(iswhite(*prog))
        ++prog;                     /* skip over white space */
    if (*prog=='\r') {              /* crlf */
        ++prog; ++prog;
        tok = EOL;
        *token='\r';
        token[1]='\n';
        token[2]=0;
        return (token_type = DELIMITER);
    }
    /* delimiter */
    if (strchr("+-*^/%=;(),><", *prog)) {
        *temp=*prog;
        prog++;                     /* advance to next position */
        temp++;
        *temp=0; 
        return (token_type=DELIMITER);
    }
    if (*prog=='"') {               /* quoted string */
        prog++;
        while(*prog!='"'&& *prog!='\r')
            *temp++=*prog++;
        if (*prog=='\r')
            serror(1);
        prog++;*temp=0;
        return(token_type=QUOTE);
    }
    if (isdigit(*prog)) {           /* number */
    while(!isdelim(*prog))
        *temp++=*prog++;
    *temp = '\0';
    return(token_type = NUMBER);
    }
    if (isalpha(*prog)) {           /* var or command */
        while(!isdelim(*prog))
            *temp++=*prog++;
        token_type=STRING;
    }
    *temp = '\0';
    /* see if a string is a command or a variable */
    if (token_type==STRING) {
        /* convert to internal rep */
        tok=look_up(token);
        if (!tok)
            token_type = VARIABLE;
        else
            token_type = COMMAND;   /* is a command */
    }
    return token_type;
}

/* Return a token to input stream. */
void putback() 
{
    char *t;
    t = token; 
    for (; *t; t++)
        prog--; 
}

/* Look up a a token's internal representation in the
   token table.
*/
look_up(s)
char *s;
{
    register int i,j;
    char *p;
    /* convert to lowercase */
    p = s;
    while(*p) {
        *p = tolower(*p);
        p++;
    }
    /* see if token is in table */
    for (i=0; *table[i].command; i++)
        if (!strcmp(table[i].command, s))
            return table[i].tok;
    return 0;                       /* unknown command */
}

/* Return true if c is a delimiter. */
isdelim(c)
char c; 
{
    if (strchr(" ;,+-<>/*%^=()", c) || c==9 || c=='\r' || c==0) 
        return 1;  
    return 0;
}

/* Return 1 if c is space or tab. */
iswhite(c)
char c;
{
    if (c==' ' || c=='\t')
        return 1;
    else return 0;
}

/*  Add or subtract two terms. */
void level2(result)
int *result;
{
    register char  op; 
    int hold; 
    level3(result); 
    while((op = *token) == '+' || op == '-') {
        get_token(); 
        level3(&hold); 
        arith(op, result, &hold);
    }
}

/* Multiply or divide two factors. */
void level3(result)
int *result;
{
    register char  op; 
    int hold;
    level4(result); 
    while((op = *token) == '*' || op == '/' || op == '%') {
        get_token(); 
        level4(&hold); 
        arith(op, result, &hold); 
    }
}

/* Process integer exponent. */
void level4(result)
int *result;
{
    int hold;
    level5(result); 
    if (*token== '^') {
        get_token(); 
        level4(&hold); 
        arith('^', result, &hold); 
    }
}

/* Is a unary + or -. */
void level5(result)
int *result;
{
    register char  op;
    op = 0; 
    if ((token_type==DELIMITER) && *token=='+' || *token=='-') {
        op = *token; 
        get_token(); 
    }
    level6(result); 
    if (op)
        unary(op, result); 
}

/* Process parenthesized expression. */
void level6(result)
int *result;
{
    if ((*token == '(') && (token_type == DELIMITER)) {
        get_token(); 
        level2(result); 
        if (*token != ')')
            serror(1);
        get_token(); 
    }
    else
        primitive(result);
}

/* Find value of number or variable. */
void primitive(result)
int *result;
{
    switch(token_type) {
        case VARIABLE:
            *result = find_var(token);
            get_token(); 
            return; 
        case NUMBER:
            *result = atoi(token);
            get_token();
            return;
        default:
            serror(0);
    }
}

/* Perform the specified arithmetic. */
void arith(o, r, h)
char o;
int *r, *h;
{
    register int t, ex;
    switch(o) {
        case '-':
            *r = *r-*h; 
            break; 
        case '+':
            *r = *r+*h; 
            break; 
        case '*':  
            *r = *r * *h; 
            break; 
        case '/':
            *r = (*r)/(*h);
            break;
        case '%':
            t = (*r)/(*h); 
            *r = *r-(t*(*h)); 
            break; 
        case '^':
            ex = *r; 
            if (*h==0) {
                *r = 1; 
                break; 
            }
            for (t=*h-1; t>0; --t)
                *r = (*r) * ex;
            break;       
    }
}

/* Reverse the sign. */
void unary(o, r)
char o;
int *r;
{
    if (o=='-')
        *r = -(*r);
}

/* Find the value of a variable. */
int find_var(s)
char *s;
{
    if (!isalpha(*s)) {
        serror(4);          /* not a variable */
        return 0;
    }
    return variables[toupper(*token)-'A'];
}

I would appreciate it if someone can put more detailed comments in this source code to help me better understand it.

Sorry, but no. There won't always be someone around who's both capable and willing to read, understand, and recomment large amounts of code just to make things easier on you. Further, the comments a lot of us would put in probably wouldn't help you any more than the comments already there. Just work through the code bit by bit until you understand it better.

If you have specific questions about a small part of the code, then feel free to ask about it. But asking others to go through a significant amount of effort because you don't want to properly work through the code yourself is very inconsiderate.

First of all, this is VERY old K&R style code. Most modern compilers will emit a lot of warnings and possibly errors unless your compiler has a flag that will tell it that this is old code. Second, deceptikon is correct. Asking people to comment an 800+ line source file is unfair. It also deprives you of analyzing the code and understanding what it does. Just keep going through the code, line by line, and as you understand what it is doing better, add your own comments. That is how you learn. Code analysis is something that all software engineers and programmers have to do, otherwise there is no way they can modify someone else's code to fix bugs, add features, or write something similar but different.

Thanks for the replies. I know this is a very old style code but you learn by understanding the old ones before diving into the new ones, right? Anyway, thank you again for the reply. I've been tryign to understand the code since last night until now. If there will be, and I know there is, a part of the eode that I can't understand, I will ask about that part of the code only. Thanks again! :)

but you learn by understanding the old ones before diving into the new ones, right?

Not really. Outdated syntax is of historical interest, but if you want to learn how to program in a language, you should learn the latest version of the language.

Be a part of the DaniWeb community

We're a friendly, industry-focused community of developers, IT pros, digital marketers, and technology enthusiasts meeting, networking, learning, and sharing knowledge.