I wanted to display the blue mean value in the text box, but it is giving me an error
blue.set(B_mean1)
AttributeError: 'numpy.ndarray' object has no attribute 'set'
And this is my code:
from Tkinter import Tk, Frame, BOTH
from Tkinter import *
import cv2
from collections import *
from CBIR import *
from experiment import *
from scipy.spatial import distance
import Tkinter,tkFileDialog
from PIL import Image, ImageTk
class Example(Frame):
def __init__(self, parent):
Frame.__init__(self, parent,background="light grey")
self.parent = parent
self.initUI()
def initUI(self):
self.parent.title("PISE")
self.pack(fill=BOTH, expand=1)
def open():
path=tkFileDialog.askopenfilename(filetypes=[("Image File",'.jpg')])
custName.set(path)
im = Image.open(path)
tkimage = ImageTk.PhotoImage(im)
myvar=Label(root,image = tkimage)
myvar.image = tkimage
myvar.pack()
myvar.place(x = 100, y = 100)
graylist1 = list()
resizelist1 = list()
eq_graylist1 = list()
cont_list1 = list()
ene_list1 = list()
homo_list1 = list()
cor_list1 = list()
B_mean1 = list()
G_mean1 = list()
R_mean1 = list()
dis_list1 = list()
imge = cv2.imread(path)
arr = array(imge)
g_img = cv2.imread(path,0)
gray_re_img = cv2.resize(g_img,(256,256))
graylist1.append(gray_re_img)
equ = cv2.equalizeHist(gray_re_img)
eq_graylist1.append(equ)
re_img = cv2.resize(imge,(256,256))
resizelist1.append(re_img)
blue, green, red = cv2.split(re_img)
total = re_img.size
B = sum(blue) / total
G = sum(green) / total
R = sum(red) / total
B_mean1.append(B)
G_mean1.append(G)
R_mean1.append(R)
im = skimage.io.imread(path, as_grey=True)
im = skimage.img_as_ubyte(im)
im /= 32
g = skimage.feature.greycomatrix(im, [1], [0], levels=8, symmetric=False, normed=True)
cont = skimage.feature.greycoprops(g, 'contrast')[0][0]
cont_list1.append(cont)
ene = skimage.feature.greycoprops(g, 'energy')[0][0]
ene_list1.append(ene)
homo = skimage.feature.greycoprops(g, 'homogeneity')[0][0]
homo_list1.append(homo)
cor = skimage.feature.greycoprops(g, 'correlation')[0][0]
cor_list1.append(cor)
dis = skimage.feature.greycoprops(g, 'dissimilarity')[0][0]
dis_list1.append(dis)
feature_matrix_ip = zip( B_mean1 , G_mean1 , R_mean1, cont_list1 , ene_list1 , homo_list1 , cor_list1 , dis_list1)
blue.set(B_mean1)
root = Tk()
root.geometry("1105x605+300+300")
app = Example(root)
label = Label(app, text='Python Image Search', fg = 'black',font = 'PoorRichard 24')
label.pack()
label.place(y = 5, x = 0)
img = Image.open('logo.png')
bg_img = ImageTk.PhotoImage(img)
label1 = Label(app, image = bg_img)
label1.place(y = 5, x = 1225)
custName = StringVar(None)
yourName = Entry(app, textvariable=custName)
yourName.grid(column=0,row=0,sticky='EW')
yourName.update()
yourName.focus_set()
yourName.pack(padx = 20, pady = 20,anchor='n')
yourName.place(y = 60, x = 100, width = 525, height = 25)
blue_label = Label(app,text = 'Blue Mean')
blue_label.place(x = 850,y = 140)
blue = IntVar()
blue_text = Entry(app,textvariable = blue)
blue_text.place(x = 1000,y = 140)
button = Button(app, text='Select an Image',command = open)
button.pack(padx = 1, pady = 1,anchor='ne')
button.place( x = 650, y = 60)
root.mainloop()
Any suggestions are welcome
Thanks in advance!