Hi,

I need to implement a kind of real-time morlet wavelet transform for 200-samples of signal in C++. I have the code ready, which does the covolution of incoming signal and complex morlet wavelet and then take the sqare norm of the covolution result to get the energy of signal at each frequecy (from 6-30Hz) and each channel(2). But I found this part of program is time-consuming. It usually took about 70ms to process a block of data. So after tens or hundreds of processing cycles, the whole system is delayed. Here I posted the wavelet code, see if there is anything that I can modify to improve the efficiency? Thank you very much if any expert can take a look at it (mainly WAVELET1::testTF)!

#ifndef MY_HEADER
#define MY_HEADER
#define LOWFREQ    1
#define HIGHFREQ   30
#define CHANNEL    2     //correspond to MAX_M in FIRFilter.h
#define MAXSAMPLE  200   //correspond to MAX_N in  FIRFilter.h
class   WAVELET1  {
private:
        double fTF [HIGHFREQ-LOWFREQ+1][MAXSAMPLE];
public:
        WAVELET1( void );
        ~WAVELET1( void );
        void testTF( int,double, double *); // do convolution
        double correlation( int, int, int,int, double, double, double *, double *);
} ;
#endif
#include "PCHIncludes.h"
#pragma hdrstop
#include <vector>
#include <cmath>
#include <limits>
#include <sstream>
#include <complex>
#include "C:/BCI2000/fftw3.h"
#include <wavelet.h>
using namespace std;
WAVELET1::WAVELET1(void)
{ 
}
WAVELET1::~WAVELET1(void)
{
}
 
void WAVELET1::testTF(int fNumSample, double fSamplingRate, double *fTestdata )
{
   // For the whole algorithm, please refer to matlab program c:\MATLAB6p5\eeglab4.515\functions
   const int                                    FREQBAND = HIGHFREQ-LOWFREQ+1;
   double     mTFraw[CHANNEL][FREQBAND][MAXSAMPLE];
   double     mTempConst;
   double        mStdevFdomain;
   double        mStdevTdomain;
   double     mTemp;
   const  double           PI=3.1415926;
   const  double                      mTfactor=0.5;
   const double     mNcwFrequency=7.0;     //which determine a wavelet family.increasing which results in
             // better frequency resolution in expense of the time resolution.
   int       len_pow2;
   int      mLength;
   int       mFFTSize,mTimeLengthSize;
   complex<double>            *mTempOutput,  *mTempOutConst;
   complex<double>           *p4,*p6,*p5;
                    // Temp output in the middle of wavelet calculation
   complex<double>                      *mBuffer3;
   complex<double>                     mBuffer4;
   std::vector<int>                     mFrequencyVector;
   std::vector<double>                    mTimeLength;
   for (int i = 0; i < FREQBAND; i++) {
   mFrequencyVector.push_back(i+LOWFREQ);
   }
   for( int channel = 0; channel < CHANNEL; channel++ )
 {
 for (int mfrequencyindex = 0; mfrequencyindex < FREQBAND; mfrequencyindex++)
   {
         //SD_f
  mStdevFdomain = mFrequencyVector[mfrequencyindex]/mNcwFrequency;
  //SD_t
  mStdevTdomain = 1/(2*PI*mStdevFdomain);
  //t: (SD_t*2)*3.5 is about all wavelet length, cover ncw cycles.
  //so the input t should be (SD_t*2)*3.5
  for (int mtindex = 0; mtindex<(7*mStdevTdomain*fSamplingRate); mtindex++)
   {   mTimeLength.push_back(-3.5*mStdevTdomain + mtindex/fSamplingRate);
   }
  mTimeLengthSize = mTimeLength.size();
  mTempConst = pow( mStdevTdomain*sqrt(PI),(-0.5));
  mTempOutput = new complex<double> [mTimeLengthSize];
  mTempOutConst = new complex<double> [mTimeLengthSize];
  p4=mTempOutput;
  p5=mTempOutConst;
  for (int i = 0; i < mTimeLengthSize; i++) {
   *p5= complex<double>(0,(2*PI*mFrequencyVector[mfrequencyindex]*mTimeLength[i]));
   *p4= mTempConst* exp( -pow((mTimeLength[i]),2)/( 2*pow(mStdevTdomain,2)))* exp(*p5);
    p4++;
    p5++;
  }
  //do convolution  by FFT
  mLength = fNumSample + mTimeLengthSize-1;
  if (mLength<=1024)
   len_pow2=1024;
  else if((mLength<=2048)&&( mLength>=1024))
    len_pow2=2048;
  else if ((mLength<=4096)&&( mLength>=2048))
    len_pow2=4096;
  else
    len_pow2=4096*2;
  mFFTSize = len_pow2;
 
                fftw_complex  *in1,*out1;
  fftw_plan p1;
  in1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*mFFTSize);
  out1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*mFFTSize);
  for( int j = 0; j < fNumSample; j++ ) {
   in1[j][0] = fTestdata[MAXSAMPLE*channel+j];  //one channel one trial data
   in1[j][1] = 0;
  }
  for( int j = fNumSample; j < mFFTSize; j++ ) {
   in1[j][0] = 0;
   in1[j][1] = 0;
  }
  p1 = fftw_plan_dft_1d(mFFTSize, in1, out1, FFTW_FORWARD,FFTW_ESTIMATE);
  fftw_execute(p1);
  fftw_destroy_plan(p1);
  fftw_free(in1);
  fftw_plan p2;
  fftw_complex  *in2,*out2;
  in2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*mFFTSize);
  out2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*mFFTSize);
  for( int j = 0; j < mTimeLengthSize; j++ ) {
   in2[j][0] = real(*(mTempOutput+j));
   in2[j][1] = imag(*(mTempOutput+j));
  }
  for( int j = mTimeLengthSize; j < mFFTSize; j++ ) {
   in2[j][0] = 0;
   in2[j][1] = 0;
  }
  p2 = fftw_plan_dft_1d(mFFTSize, in2, out2, FFTW_FORWARD,FFTW_ESTIMATE);
  fftw_execute(p2);
  fftw_destroy_plan(p2);
  fftw_free(in2);
 
  fftw_plan p3;
  fftw_complex  *in3,*out3;
  in3 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*mFFTSize);
  out3 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*mFFTSize);
  for( int j = 0; j < mFFTSize; j++ ) {
   in3[j][0] = out1[j][0]*out2[j][0]-out1[j][1]*out2[j][1];
   in3[j][1] = out1[j][1]*out2[j][0]+out1[j][0]*out2[j][1];
  }
  p3 = fftw_plan_dft_1d(mFFTSize, in3, out3, FFTW_BACKWARD,FFTW_ESTIMATE);
  fftw_execute(p3);
  fftw_destroy_plan(p3);
  fftw_free(in3);
  mBuffer3 = new complex<double> [mLength];
  p6 = mBuffer3;
  for( int i=0; i < mLength ; i++ ) {
   *p6 = complex<double>(out3[i][0]/mFFTSize,out3[i][1]/mFFTSize);
   p6++;
  }
  fftw_free(out1);
  fftw_free(out2);
  fftw_free(out3);
  for( int i = 0; i < fNumSample; i++ )  {
   mBuffer4 = mBuffer3[static_cast<int>(floor(mTimeLength.size()*0.5+mTfactor))+i-1];
   mTFraw[channel][mfrequencyindex][i] = 10*log10(pow(abs(mBuffer4),2) );
   }
  delete[] mTempOutput;
  delete[] mTempOutConst;
  delete[] mBuffer3;
                //delete[] mBuffer4;
  mTimeLength.clear();
    }
 }
   //c3-c4 test trial
   for( int k = 0; k < FREQBAND; k++ )  {
 for(int l = 0; l < fNumSample; l++)
  fTF[k][l]= mTFraw[0][k][l]-mTFraw[1][k][l];
   } //c3-c4
}
double WAVELET1::correlation (int fLowCheckFreq, int fHighCheckFreq, int fLowCheckSample,  int fHighCheckSample, double fNormRightTemplate, double fNormLeftTemplate, double *flefttemplate, double *frighttemplate)
{
 double mNormTest,mTestResult;
 double mCr,mCl;
 mCl=0;
 mCr=0;
 mNormTest=0;
 // do correlation between test TF distribution
 for (int i = fLowCheckFreq-1; i < fHighCheckFreq; i++) {
  for(int j = fLowCheckSample-1; j < fHighCheckSample; j++)  {
  mNormTest=mNormTest+pow(fTF[i][j],2);
  mCl =mCl+ (fTF[i][j])* flefttemplate[i*MAXSAMPLE+j];
  mCr =mCr+(fTF[i][j])* frighttemplate[i*MAXSAMPLE+j];
  }
 }
 mCr=mCr/(sqrt(mNormTest)*sqrt(fNormRightTemplate));
 mCl=mCl/(sqrt(mNormTest)*sqrt(fNormLeftTemplate));
 mTestResult = mCl-mCr;
 return ( mTestResult);
} ;

properly indent when you are posting bulk code. That makes reading easier, and will give you a better chance of expert help.

Yeah, you are right. But I don't know why the indent are gone when i posted it.

Turn the "Replace Tabs with Spaces" option in your code editor ON. BB Code tags tend to eat up Tabs.

Thank you!
I repost the code:

#include "PCHIncludes.h"
#pragma hdrstop
#include <vector>
#include <cmath>
#include <limits>
#include <sstream>
#include <complex>
#include "C:/BCI2000/fftw3.h"
#include <wavelet.h>
using namespace std;
WAVELET1::WAVELET1(void)
{ 
}
WAVELET1::~WAVELET1(void)
{
}
// fNumSample: the length of test data(data points)
void WAVELET1::testTF(int fNumSample, double fSamplingRate, double *fTestdata )
{
   // For the whole algorithm, please refer to matlab program c:\MATLAB6p5\eeglab4.515\functions
   const int                                   FREQBAND = HIGHFREQ-LOWFREQ+1;
   double                                      mTFraw[CHANNEL][FREQBAND][MAXSAMPLE];
   double                                      mTempConst;
   double                                      mStdevFdomain;
   double                                      mStdevTdomain;
   double                                      mTemp;
   const  double                             PI=3.1415926;
   const  double                             mTfactor=0.5;
   const  double                             mNcwFrequency=7.0;     //which determine a wavelet family.increasing which results in
                                                                                      // better frequency resolution in expense of the time resolution.
   int                                            len_pow2;
   int                                            mLength;
   int                                            mFFTSize,mTimeLengthSize;
   complex<double>                     *mTempOutput,  *mTempOutConst;
   complex<double>                     *p4,*p6,*p5;
                                                                                    // Temp output in the middle of wavelet calculation
   complex<double>                     *mBuffer3;
   complex<double>                       mBuffer4;
   std::vector<int>                         mFrequencyVector;
   std::vector<double>                   mTimeLength;
   for (int i = 0; i < FREQBAND; i++) {
                 mFrequencyVector.push_back(i+LOWFREQ);
   }
   for( int channel = 0; channel < CHANNEL; channel++ )
  {
            for (int mfrequencyindex = 0; mfrequencyindex < FREQBAND; mfrequencyindex++)
           {
                 //SD_f
                mStdevFdomain = mFrequencyVector[mfrequencyindex]/mNcwFrequency;
                 //SD_t
                mStdevTdomain = 1/(2*PI*mStdevFdomain);
                 //t: (SD_t*2)*3.5 is about all wavelet length, cover ncw cycles.
                //so the input t should be (SD_t*2)*3.5
                for (int mtindex = 0; mtindex<(7*mStdevTdomain*fSamplingRate); mtindex++)
                  {          mTimeLength.push_back(-3.5*mStdevTdomain + mtindex/fSamplingRate);
                  }
                mTimeLengthSize = mTimeLength.size();
                mTempConst = pow( mStdevTdomain*sqrt(PI),(-0.5));
                mTempOutput = new complex<double> [mTimeLengthSize];
                mTempOutConst = new complex<double> [mTimeLengthSize];
                p4=mTempOutput;
                p5=mTempOutConst;
                for (int i = 0; i < mTimeLengthSize; i++) {
                          *p5= complex<double>(0,(2*PI*mFrequencyVector[mfrequencyindex]*mTimeLength[i]));
                          *p4= mTempConst* exp( -pow((mTimeLength[i]),2)/( 2*pow(mStdevTdomain,2)))* exp(*p5);
                          p4++;
                          p5++;
                  }
                //do convolution  by FFT
                mLength = fNumSample + mTimeLengthSize-1;
                if (mLength<=1024)
                len_pow2=1024;
                else if((mLength<=2048)&&( mLength>=1024))
                len_pow2=2048;
                else if ((mLength<=4096)&&( mLength>=2048))
               len_pow2=4096;
               else
               len_pow2=4096*2;
               mFFTSize = len_pow2;
 
                fftw_complex  *in1,*out1;
                fftw_plan p1;
                in1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*mFFTSize);
                out1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*mFFTSize);
               for( int j = 0; j < fNumSample; j++ ) {
                        in1[j][0] = fTestdata[MAXSAMPLE*channel+j];  //one channel one trial data
                        in1[j][1] = 0;
               }
               for( int j = fNumSample; j < mFFTSize; j++ ) {
                        in1[j][0] = 0;
                        in1[j][1] = 0;
                }
               p1 = fftw_plan_dft_1d(mFFTSize, in1, out1, FFTW_FORWARD,FFTW_ESTIMATE);
               fftw_execute(p1);
               fftw_destroy_plan(p1);
               fftw_free(in1);
               fftw_plan p2;
               fftw_complex  *in2,*out2;
               in2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*mFFTSize);
               out2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*mFFTSize);
               for( int j = 0; j < mTimeLengthSize; j++ ) {
                          in2[j][0] = real(*(mTempOutput+j));
                          in2[j][1] = imag(*(mTempOutput+j));
                }
               for( int j = mTimeLengthSize; j < mFFTSize; j++ ) {
                          in2[j][0] = 0;
                          in2[j][1] = 0;
                 }
                p2 = fftw_plan_dft_1d(mFFTSize, in2, out2, FFTW_FORWARD,FFTW_ESTIMATE);
                fftw_execute(p2);
                fftw_destroy_plan(p2);
                fftw_free(in2);
 
                fftw_plan p3;
                fftw_complex  *in3,*out3;
                in3 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*mFFTSize);
                out3 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*mFFTSize);
                for( int j = 0; j < mFFTSize; j++ ) {
                         in3[j][0] = out1[j][0]*out2[j][0]-out1[j][1]*out2[j][1];
                         in3[j][1] = out1[j][1]*out2[j][0]+out1[j][0]*out2[j][1];
                  }
                p3 = fftw_plan_dft_1d(mFFTSize, in3, out3, FFTW_BACKWARD,FFTW_ESTIMATE);
                fftw_execute(p3);
                fftw_destroy_plan(p3);
                fftw_free(in3);
                mBuffer3 = new complex<double> [mLength];
                p6 = mBuffer3;
                for( int i=0; i < mLength ; i++ ) {
                          *p6 = complex<double>(out3[i][0]/mFFTSize,out3[i][1]/mFFTSize);
                          p6++;
                 }
               fftw_free(out1);
               fftw_free(out2);
               fftw_free(out3);
               for( int i = 0; i < fNumSample; i++ )  {
                            mBuffer4 = mBuffer3[static_cast<int>(floor(mTimeLength.size()*0.5+mTfactor))+i-1];
                            mTFraw[channel][mfrequencyindex][i] = 10*log10(pow(abs(mBuffer4),2) );
                  }
              delete[] mTempOutput;
              delete[] mTempOutConst;
              delete[] mBuffer3;
               //delete[] mBuffer4;
             mTimeLength.clear();
           }
}
  //c3-c4 test trial
 for( int k = 0; k < FREQBAND; k++ )  {
            for(int l = 0; l < fNumSample; l++)
            fTF[k][l]= mTFraw[0][k][l]-mTFraw[1][k][l];
   } 
}
double WAVELET1::correlation (int fLowCheckFreq, int fHighCheckFreq, int fLowCheckSample,  int fHighCheckSample, double                                fNormRightTemplate, double fNormLeftTemplate, double *flefttemplate, double *frighttemplate)
{
 double mNormTest,mTestResult;
 double mCr,mCl;
 mCl=0;
 mCr=0;
 mNormTest=0;
 // do correlation between test TF distribution
 for (int i = fLowCheckFreq-1; i < fHighCheckFreq; i++) {
             for(int j = fLowCheckSample-1; j < fHighCheckSample; j++)  {
                            mNormTest=mNormTest+pow(fTF[i][j],2);
                            mCl =mCl+ (fTF[i][j])* flefttemplate[i*MAXSAMPLE+j];
                            mCr =mCr+(fTF[i][j])* frighttemplate[i*MAXSAMPLE+j];
             }
 }
 mCr=mCr/(sqrt(mNormTest)*sqrt(fNormRightTemplate));
 mCl=mCl/(sqrt(mNormTest)*sqrt(fNormLeftTemplate));
 mTestResult = mCl-mCr;
 return ( mTestResult);
} ;
Be a part of the DaniWeb community

We're a friendly, industry-focused community of developers, IT pros, digital marketers, and technology enthusiasts meeting, networking, learning, and sharing knowledge.