Hi guys,
I'm looking for AES equivalent inverse cipher...Has any one worked on it..
I need a c code for it ...
please it's really very urgent..
arun_taurean -9 Light Poster
Narue 5,707 Bad Cop Team Colleague
You already have a thread on this. Why start another?
jnawrocki -3 Light Poster
Here's java script for straight-up AES. It should be easy to converted to C. It is not inverse but there are plenty of explainations on the web.
arun_taurean -9 Light Poster
Hi i have done this and tried to convert it in C..But it was weird and lots of errors are produced...And moreover Equivalnet Inverse Cipher has is a special case.Please if u have worked on it or any related codes are there please help me out
arun_taurean -9 Light Poster
You already have a thread on this. Why start another?
Actually my thread was limited to C forums and wasnt getting much responses..so i had to start a new one...And also I was new when i started the thread...
Got any related stuffs help me out
jnawrocki -3 Light Poster
Post your converted code.
arun_taurean -9 Light Poster
Hi i have attached the code.....Well this decryption works very well The main problem is want to implement Equivalent Inverse Cipher....Moreover i'm a really bad programmer.....If u have any idea about Equivalent Inverse Cipher just make some changes in this code and mail me.....Pleas it's really urgent.......Hope you have worked on AES....
#include<stdio.h>
#define Nb 4
int Nr=0;
int Nk=0;
unsigned char in[16], out[16], state[4][4];
// The array that stores the round keys.
unsigned char RoundKey[240];
// The Key input to the AES Program
unsigned char Key[32];
int getSBoxInvert(int num)
{
int rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
return rsbox[num];
}
int getSBoxValue(int num)
{
int sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
return sbox[num];
}
// The round constant word array, Rcon[i], contains the values given by
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
// Note that i starts at 1, not 0).
int Rcon[255] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb };
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
void KeyExpansion()
{
int i,j;
unsigned char temp[4],k;
// The first round key is the key itself.
for(i=0;i<Nk;i++)
{
RoundKey[i*4]=Key[i*4];
RoundKey[i*4+1]=Key[i*4+1];
RoundKey[i*4+2]=Key[i*4+2];
RoundKey[i*4+3]=Key[i*4+3];
}
// All other round keys are found from the previous round keys.
while (i < (Nb * (Nr+1)))
{
for(j=0;j<4;j++)
{
temp[j]=RoundKey[(i-1) * 4 + j];
}
if (i % Nk == 0)
{
// This function rotates the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
k = temp[0];
temp[0] = temp[1];
temp[1] = temp[2];
temp[2] = temp[3];
temp[3] = k;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
temp[0]=getSBoxValue(temp[0]);
temp[1]=getSBoxValue(temp[1]);
temp[2]=getSBoxValue(temp[2]);
temp[3]=getSBoxValue(temp[3]);
}
temp[0] = temp[0] ^ Rcon[i/Nk];
}
else if (Nk > 6 && i % Nk == 4)
{
// Function Subword()
{
temp[0]=getSBoxValue(temp[0]);
temp[1]=getSBoxValue(temp[1]);
temp[2]=getSBoxValue(temp[2]);
temp[3]=getSBoxValue(temp[3]);
}
}
RoundKey[i*4+0] = RoundKey[(i-Nk)*4+0] ^ temp[0];
RoundKey[i*4+1] = RoundKey[(i-Nk)*4+1] ^ temp[1];
RoundKey[i*4+2] = RoundKey[(i-Nk)*4+2] ^ temp[2];
RoundKey[i*4+3] = RoundKey[(i-Nk)*4+3] ^ temp[3];
i++;
}
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
void AddRoundKey(int round)
{
int i,j;
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
state[j][i] ^= RoundKey[round * Nb * 4 + i * Nb + j];
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void InvSubBytes()
{
int i,j;
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
state[i][j] = getSBoxInvert(state[i][j]);
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
void InvShiftRows()
{
unsigned char temp;
// Rotate first row 1 columns to right
temp=state[1][3];
state[1][3]=state[1][2];
state[1][2]=state[1][1];
state[1][1]=state[1][0];
state[1][0]=temp;
// Rotate second row 2 columns to right
temp=state[2][0];
state[2][0]=state[2][2];
state[2][2]=temp;
temp=state[2][1];
state[2][1]=state[2][3];
state[2][3]=temp;
// Rotate third row 3 columns to right
temp=state[3][0];
state[3][0]=state[3][1];
state[3][1]=state[3][2];
state[3][2]=state[3][3];
state[3][3]=temp;
}
// xtime is a macro that finds the product of {02} and the argument to xtime modulo {1b}
#define xtime(x) ((x<<1) ^ (((x>>7) & 1) * 0x1b))
// Multiplty is a macro used to multiply numbers in the field GF(2^8)
#define Multiply(x,y) (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for beginners.
// Please use the references to gain more information.
void InvMixColumns()
{
int i;
unsigned char a,b,c,d;
for(i=0;i<4;i++)
{
a = state[0][i];
b = state[1][i];
c = state[2][i];
d = state[3][i];
state[0][i] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
state[1][i] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
state[2][i] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
state[3][i] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// InvCipher is the main function that decrypts the CipherText.
void InvCipher()
{
int i,j,round=0;
//Copy the input CipherText to state array.
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
state[j][i] = in[i*4 + j];
}
}
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round=Nr-1;round>0;round--)
{
InvShiftRows();
InvSubBytes();
AddRoundKey(round);
InvMixColumns();
}
// The last round is given below.
// The MixColumns function is not here in the last round.
InvShiftRows();
InvSubBytes();
AddRoundKey(0);
// The decryption process is over.
// Copy the state array to output array.
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
out[i*4+j]=state[j][i];
}
}
}
void main()
{
int i;
// Receive the length of key here.
while(Nr!=128 && Nr!=192 && Nr!=256)
{
printf("Enter the length of Key(128, 192 or 256 only): ");
scanf("%d",&Nr);
}
// Calculate Nk and Nr from the received value.
Nk = Nr / 32;
Nr = Nk + 6;
// The array temp stores the key.
// The array temp2 stores the plaintext.
unsigned char temp[32] = {0x00 ,0x01 ,0x02 ,0x03 ,0x04 ,0x05 ,0x06 ,0x07 ,0x08 ,0x09 ,0x0a ,0x0b ,0x0c ,0x0d ,0x0e ,0x0f};
unsigned char temp2[32]=
{0x69 ,0xc4 ,0xe0 ,0xd8 ,0x6a ,0x7b ,0x04 ,0x30 ,0xd8 ,0xcd ,0xb7 ,0x80 ,0x70 ,0xb4 ,0xc5 ,0x5a};
// Copy the Key and CipherText
for(i=0;i<Nk*4;i++)
{
Key[i]=temp[i];
in[i]=temp2[i];
}
//The Key-Expansion routine must be called before the decryption routine.
KeyExpansion();
// The next function call decrypts the CipherText with the Key using AES algorithm.
InvCipher();
// Output the decrypted text.
printf("\nText after decryption:\n");
for(i=0;i<Nb*4;i++)
{
printf("%02x ",out[i]);
}
printf("\n\n");
}
arun_taurean -9 Light Poster
Post your converted code.
Hi i have attached the code.....Well this decryption works very well The main problem is want to implement Equivalent Inverse Cipher....Moreover i'm a really bad programmer.....If u have any idea about Equivalent Inverse Cipher just make some changes in this code and mail me.....Pleas it's really urgent.......Hope you have worked on AES....
#include<stdio.h>
#define Nb 4
int Nr=0;
int Nk=0;
unsigned char in[16], out[16], state[4][4];
// The array that stores the round keys.
unsigned char RoundKey[240];
// The Key input to the AES Program
unsigned char Key[32];
int getSBoxInvert(int num)
{
int rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
return rsbox[num];
}
int getSBoxValue(int num)
{
int sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
return sbox[num];
}
// The round constant word array, Rcon[i], contains the values given by
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
// Note that i starts at 1, not 0).
int Rcon[255] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb };
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
void KeyExpansion()
{
int i,j;
unsigned char temp[4],k;
// The first round key is the key itself.
for(i=0;i<Nk;i++)
{
RoundKey[i*4]=Key[i*4];
RoundKey[i*4+1]=Key[i*4+1];
RoundKey[i*4+2]=Key[i*4+2];
RoundKey[i*4+3]=Key[i*4+3];
}
// All other round keys are found from the previous round keys.
while (i < (Nb * (Nr+1)))
{
for(j=0;j<4;j++)
{
temp[j]=RoundKey[(i-1) * 4 + j];
}
if (i % Nk == 0)
{
// This function rotates the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
k = temp[0];
temp[0] = temp[1];
temp[1] = temp[2];
temp[2] = temp[3];
temp[3] = k;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
temp[0]=getSBoxValue(temp[0]);
temp[1]=getSBoxValue(temp[1]);
temp[2]=getSBoxValue(temp[2]);
temp[3]=getSBoxValue(temp[3]);
}
temp[0] = temp[0] ^ Rcon[i/Nk];
}
else if (Nk > 6 && i % Nk == 4)
{
// Function Subword()
{
temp[0]=getSBoxValue(temp[0]);
temp[1]=getSBoxValue(temp[1]);
temp[2]=getSBoxValue(temp[2]);
temp[3]=getSBoxValue(temp[3]);
}
}
RoundKey[i*4+0] = RoundKey[(i-Nk)*4+0] ^ temp[0];
RoundKey[i*4+1] = RoundKey[(i-Nk)*4+1] ^ temp[1];
RoundKey[i*4+2] = RoundKey[(i-Nk)*4+2] ^ temp[2];
RoundKey[i*4+3] = RoundKey[(i-Nk)*4+3] ^ temp[3];
i++;
}
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
void AddRoundKey(int round)
{
int i,j;
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
state[j][i] ^= RoundKey[round * Nb * 4 + i * Nb + j];
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void InvSubBytes()
{
int i,j;
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
state[i][j] = getSBoxInvert(state[i][j]);
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
void InvShiftRows()
{
unsigned char temp;
// Rotate first row 1 columns to right
temp=state[1][3];
state[1][3]=state[1][2];
state[1][2]=state[1][1];
state[1][1]=state[1][0];
state[1][0]=temp;
// Rotate second row 2 columns to right
temp=state[2][0];
state[2][0]=state[2][2];
state[2][2]=temp;
temp=state[2][1];
state[2][1]=state[2][3];
state[2][3]=temp;
// Rotate third row 3 columns to right
temp=state[3][0];
state[3][0]=state[3][1];
state[3][1]=state[3][2];
state[3][2]=state[3][3];
state[3][3]=temp;
}
// xtime is a macro that finds the product of {02} and the argument to xtime modulo {1b}
#define xtime(x) ((x<<1) ^ (((x>>7) & 1) * 0x1b))
// Multiplty is a macro used to multiply numbers in the field GF(2^8)
#define Multiply(x,y) (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for beginners.
// Please use the references to gain more information.
void InvMixColumns()
{
int i;
unsigned char a,b,c,d;
for(i=0;i<4;i++)
{
a = state[0][i];
b = state[1][i];
c = state[2][i];
d = state[3][i];
state[0][i] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
state[1][i] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
state[2][i] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
state[3][i] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// InvCipher is the main function that decrypts the CipherText.
void InvCipher()
{
int i,j,round=0;
//Copy the input CipherText to state array.
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
state[j][i] = in[i*4 + j];
}
}
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round=Nr-1;round>0;round--)
{
InvShiftRows();
InvSubBytes();
AddRoundKey(round);
InvMixColumns();
}
// The last round is given below.
// The MixColumns function is not here in the last round.
InvShiftRows();
InvSubBytes();
AddRoundKey(0);
// The decryption process is over.
// Copy the state array to output array.
for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
out[i*4+j]=state[j][i];
}
}
}
void main()
{
int i;
// Receive the length of key here.
while(Nr!=128 && Nr!=192 && Nr!=256)
{
printf("Enter the length of Key(128, 192 or 256 only): ");
scanf("%d",&Nr);
}
// Calculate Nk and Nr from the received value.
Nk = Nr / 32;
Nr = Nk + 6;
// The array temp stores the key.
// The array temp2 stores the plaintext.
unsigned char temp[32] = {0x00 ,0x01 ,0x02 ,0x03 ,0x04 ,0x05 ,0x06 ,0x07 ,0x08 ,0x09 ,0x0a ,0x0b ,0x0c ,0x0d ,0x0e ,0x0f};
unsigned char temp2[32]=
{0x69 ,0xc4 ,0xe0 ,0xd8 ,0x6a ,0x7b ,0x04 ,0x30 ,0xd8 ,0xcd ,0xb7 ,0x80 ,0x70 ,0xb4 ,0xc5 ,0x5a};
// Copy the Key and CipherText
for(i=0;i<Nk*4;i++)
{
Key[i]=temp[i];
in[i]=temp2[i];
}
//The Key-Expansion routine must be called before the decryption routine.
KeyExpansion();
// The next function call decrypts the CipherText with the Key using AES algorithm.
InvCipher();
// Output the decrypted text.
printf("\nText after decryption:\n");
for(i=0;i<Nb*4;i++)
{
printf("%02x ",out[i]);
}
printf("\n\n");
}
arun_taurean -9 Light Poster
Post your converted code.
hi i have posted the code ...please check it out...This code works very well...I want decryption using Equivalent Inverse Cipher....please if you have any idea of it help me out..
jnawrocki -3 Light Poster
Read the following:
csrc.nist.gov/publications/fips/fips197/fips-197.pdf
It contains an in depth discussion on this subject and contains pseudo-code for the inverse cipher function.
Be a part of the DaniWeb community
We're a friendly, industry-focused community of developers, IT pros, digital marketers, and technology enthusiasts meeting, networking, learning, and sharing knowledge.