Hi guys,
I'm looking for AES equivalent inverse cipher...Has any one worked on it..
I need a c code for it ...
please it's really very urgent..

You already have a thread on this. Why start another?

Hi i have done this and tried to convert it in C..But it was weird and lots of errors are produced...And moreover Equivalnet Inverse Cipher has is a special case.Please if u have worked on it or any related codes are there please help me out

You already have a thread on this. Why start another?

Actually my thread was limited to C forums and wasnt getting much responses..so i had to start a new one...And also I was new when i started the thread...
Got any related stuffs help me out

Post your converted code.

Hi i have attached the code.....Well this decryption works very well The main problem is want to implement Equivalent Inverse Cipher....Moreover i'm a really bad programmer.....If u have any idea about Equivalent Inverse Cipher just make some changes in this code and mail me.....Pleas it's really urgent.......Hope you have worked on AES....

#include<stdio.h>  
#define Nb 4  
     
int Nr=0;     
int Nk=0;    
unsigned char in[16], out[16], state[4][4];  
    
 // The array that stores the round keys.  
 unsigned char RoundKey[240];  
    
 // The Key input to the AES Program  
 unsigned char Key[32];  
    
 int getSBoxInvert(int num)  
 {  
     int rsbox[256] = {  
     0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,  
     0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,  
     0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,  
     0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,  
     0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,  
     0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,  
     0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,  
     0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,  
     0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,  
     0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,  
     0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,  
     0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,  
     0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,  
     0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,  
     0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,  
     0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };  
     return rsbox[num];  
 }  
    
 int getSBoxValue(int num)  
 {  
     int sbox[256] = {  
     //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F  
     0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,  
     0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,  
     0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,  
     0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,  
     0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,  
     0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,  
     0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,  
     0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,  
     0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,  
     0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,  
     0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,  
     0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,  
     0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,  
     0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,  
     0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,  
     0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };  
     return sbox[num];  
 }  
    
 // The round constant word array, Rcon[i], contains the values given by  
 // x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)  
 // Note that i starts at 1, not 0).  
 int Rcon[255] = {  
     0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,  
     0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,  
     0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,  
     0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,  
     0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,  
     0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,  
     0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,  
     0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,  
     0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,  
     0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,  
     0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,  
     0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,  
     0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,  
     0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,  
     0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,  
     0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb  };  
    
 // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.  
 void KeyExpansion()  
 {  
     int i,j;  
     unsigned char temp[4],k;  
      
         // The first round key is the key itself.  
     for(i=0;i<Nk;i++)  
     {  
         RoundKey[i*4]=Key[i*4];  
         RoundKey[i*4+1]=Key[i*4+1];  
         RoundKey[i*4+2]=Key[i*4+2];  
         RoundKey[i*4+3]=Key[i*4+3];  
     }  
    
     // All other round keys are found from the previous round keys.  
     while (i < (Nb * (Nr+1)))  
     {  
         for(j=0;j<4;j++)  
         {  
             temp[j]=RoundKey[(i-1) * 4 + j];  
         }  
         if (i % Nk == 0)  
         {  
             // This function rotates the 4 bytes in a word to the left once.  
             // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]  
    
             // Function RotWord()  
             {  
                 k = temp[0];  
                 temp[0] = temp[1];  
                 temp[1] = temp[2];  
                 temp[2] = temp[3];  
                 temp[3] = k;  
             }  
    
             // SubWord() is a function that takes a four-byte input word and  
             // applies the S-box to each of the four bytes to produce an output word.  
    
             // Function Subword()  
             {  
                 temp[0]=getSBoxValue(temp[0]);  
                 temp[1]=getSBoxValue(temp[1]);  
                 temp[2]=getSBoxValue(temp[2]);  
                 temp[3]=getSBoxValue(temp[3]);  
             }  
    
             temp[0] =  temp[0] ^ Rcon[i/Nk];  
         }  
         else if (Nk > 6 && i % Nk == 4)  
         {  
             // Function Subword()  
             {  
                 temp[0]=getSBoxValue(temp[0]);  
                 temp[1]=getSBoxValue(temp[1]);  
                 temp[2]=getSBoxValue(temp[2]);  
                 temp[3]=getSBoxValue(temp[3]);  
             }  
         }  
         RoundKey[i*4+0] = RoundKey[(i-Nk)*4+0] ^ temp[0];  
         RoundKey[i*4+1] = RoundKey[(i-Nk)*4+1] ^ temp[1];  
         RoundKey[i*4+2] = RoundKey[(i-Nk)*4+2] ^ temp[2];  
         RoundKey[i*4+3] = RoundKey[(i-Nk)*4+3] ^ temp[3];  
         i++;  
     }  
 } 

    
 // This function adds the round key to state.  
 // The round key is added to the state by an XOR function.  
 void AddRoundKey(int round)  
 {  
     int i,j;  
     for(i=0;i<4;i++)  
     {  
         for(j=0;j<4;j++)  
         {  
             state[j][i] ^= RoundKey[round * Nb * 4 + i * Nb + j];  
         }  
     }  
 }  
    
 // The SubBytes Function Substitutes the values in the  
 // state matrix with values in an S-box.  
 void InvSubBytes()  
 {  
     int i,j;  
     for(i=0;i<4;i++)  
     {  
         for(j=0;j<4;j++)  
         {  
             state[i][j] = getSBoxInvert(state[i][j]);  
    
         }  
     }  
 }  
    
 // The ShiftRows() function shifts the rows in the state to the left.  
 // Each row is shifted with different offset.  
 // Offset = Row number. So the first row is not shifted.  
 void InvShiftRows()  
 {  
     unsigned char temp;  
    
     // Rotate first row 1 columns to right     
         temp=state[1][3];  
     state[1][3]=state[1][2];  
     state[1][2]=state[1][1];  
     state[1][1]=state[1][0];  
     state[1][0]=temp;  
    
     // Rotate second row 2 columns to right     
         temp=state[2][0];  
     state[2][0]=state[2][2];  
     state[2][2]=temp;  
    
     temp=state[2][1];  
     state[2][1]=state[2][3];  
     state[2][3]=temp;  
    
     // Rotate third row 3 columns to right  
     temp=state[3][0];  
     state[3][0]=state[3][1];  
     state[3][1]=state[3][2];  
     state[3][2]=state[3][3];  
     state[3][3]=temp;  
 }  
    
 // xtime is a macro that finds the product of {02} and the argument to xtime modulo {1b}   
 #define xtime(x)   ((x<<1) ^ (((x>>7) & 1) * 0x1b))  
    
 // Multiplty is a macro used to multiply numbers in the field GF(2^8)  
 #define Multiply(x,y) (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))  
    
 // MixColumns function mixes the columns of the state matrix.  
 // The method used to multiply may be difficult to understand for beginners.  
 // Please use the references to gain more information.  
 void InvMixColumns()  
 {  
     int i;  
     unsigned char a,b,c,d;  
     for(i=0;i<4;i++)  
     {     
      
         a = state[0][i];  
         b = state[1][i];  
         c = state[2][i];  
         d = state[3][i];  
    
          
         state[0][i] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);  
         state[1][i] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);  
         state[2][i] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);  
         state[3][i] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);  
     }  
 }  
    
 // InvCipher is the main function that decrypts the CipherText.  
 void InvCipher()  
 {  
     int i,j,round=0;  
    
     //Copy the input CipherText to state array.  
     for(i=0;i<4;i++)  
     {  
         for(j=0;j<4;j++)  
         {  
             state[j][i] = in[i*4 + j];  
         }  
     }  
    
     // Add the First round key to the state before starting the rounds.  
        AddRoundKey(Nr);  
    
    
    
             // There will be Nr rounds.  
     // The first Nr-1 rounds are identical.  
     // These Nr-1 rounds are executed in the loop below.  
     for(round=Nr-1;round>0;round--)  
     {  
         InvShiftRows();  
         InvSubBytes();  
         AddRoundKey(round);  
         InvMixColumns();  
     }  
      
         // The last round is given below.  
     // The MixColumns function is not here in the last round.  
     InvShiftRows();  
     InvSubBytes();  
     AddRoundKey(0);  
    
     // The decryption process is over.  
     // Copy the state array to output array.  
     for(i=0;i<4;i++)  
     {  
         for(j=0;j<4;j++)  
         {  
             out[i*4+j]=state[j][i];  
         }  
     }  
 }  
 void main()  
 {  
     int i;  
    
     // Receive the length of key here.  
     while(Nr!=128 && Nr!=192 && Nr!=256)  
     {  
         printf("Enter the length of Key(128, 192 or 256 only): ");  
         scanf("%d",&Nr);  
     }  
     // Calculate Nk and Nr from the received value.  
     Nk = Nr / 32;  
     Nr = Nk + 6;  
    
    
    

     // The array temp stores the key.  
     // The array temp2 stores the plaintext.  
     unsigned char temp[32] = {0x00  ,0x01  ,0x02  ,0x03  ,0x04  ,0x05  ,0x06  ,0x07  ,0x08  ,0x09  ,0x0a  ,0x0b  ,0x0c  ,0x0d  ,0x0e  ,0x0f};  
     unsigned char temp2[32]= 
{0x69  ,0xc4  ,0xe0  ,0xd8  ,0x6a  ,0x7b  ,0x04  ,0x30  ,0xd8  ,0xcd  ,0xb7  ,0x80  ,0x70  ,0xb4  ,0xc5  ,0x5a};  
      
         // Copy the Key and CipherText  
     for(i=0;i<Nk*4;i++)  
     {  
         Key[i]=temp[i];  
         in[i]=temp2[i];  
     }  
 //The Key-Expansion routine must be called before the decryption routine.  
        KeyExpansion();  
    
     // The next function call decrypts the CipherText with the Key using AES algorithm.  
        InvCipher();  
    
     // Output the decrypted text.  
     printf("\nText after decryption:\n");  
     for(i=0;i<Nb*4;i++)  
     {  
         printf("%02x ",out[i]);  
     }  
     printf("\n\n");  
 }

Post your converted code.

Hi i have attached the code.....Well this decryption works very well The main problem is want to implement Equivalent Inverse Cipher....Moreover i'm a really bad programmer.....If u have any idea about Equivalent Inverse Cipher just make some changes in this code and mail me.....Pleas it's really urgent.......Hope you have worked on AES....

#include<stdio.h>  
#define Nb 4  
     
int Nr=0;     
int Nk=0;    
unsigned char in[16], out[16], state[4][4];  
    
 // The array that stores the round keys.  
 unsigned char RoundKey[240];  
    
 // The Key input to the AES Program  
 unsigned char Key[32];  
    
 int getSBoxInvert(int num)  
 {  
     int rsbox[256] = {  
     0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,  
     0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,  
     0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,  
     0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,  
     0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,  
     0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,  
     0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,  
     0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,  
     0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,  
     0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,  
     0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,  
     0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,  
     0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,  
     0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,  
     0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,  
     0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };  
     return rsbox[num];  
 }  
    
 int getSBoxValue(int num)  
 {  
     int sbox[256] = {  
     //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F  
     0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,  
     0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,  
     0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,  
     0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,  
     0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,  
     0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,  
     0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,  
     0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,  
     0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,  
     0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,  
     0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,  
     0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,  
     0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,  
     0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,  
     0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,  
     0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };  
     return sbox[num];  
 }  
    
 // The round constant word array, Rcon[i], contains the values given by  
 // x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)  
 // Note that i starts at 1, not 0).  
 int Rcon[255] = {  
     0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,  
     0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,  
     0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,  
     0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,  
     0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,  
     0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,  
     0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,  
     0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,  
     0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,  
     0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,  
     0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,  
     0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,  
     0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,  
     0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,  
     0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,  
     0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb  };  
    
 // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.  
 void KeyExpansion()  
 {  
     int i,j;  
     unsigned char temp[4],k;  
      
         // The first round key is the key itself.  
     for(i=0;i<Nk;i++)  
     {  
         RoundKey[i*4]=Key[i*4];  
         RoundKey[i*4+1]=Key[i*4+1];  
         RoundKey[i*4+2]=Key[i*4+2];  
         RoundKey[i*4+3]=Key[i*4+3];  
     }  
    
     // All other round keys are found from the previous round keys.  
     while (i < (Nb * (Nr+1)))  
     {  
         for(j=0;j<4;j++)  
         {  
             temp[j]=RoundKey[(i-1) * 4 + j];  
         }  
         if (i % Nk == 0)  
         {  
             // This function rotates the 4 bytes in a word to the left once.  
             // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]  
    
             // Function RotWord()  
             {  
                 k = temp[0];  
                 temp[0] = temp[1];  
                 temp[1] = temp[2];  
                 temp[2] = temp[3];  
                 temp[3] = k;  
             }  
    
             // SubWord() is a function that takes a four-byte input word and  
             // applies the S-box to each of the four bytes to produce an output word.  
    
             // Function Subword()  
             {  
                 temp[0]=getSBoxValue(temp[0]);  
                 temp[1]=getSBoxValue(temp[1]);  
                 temp[2]=getSBoxValue(temp[2]);  
                 temp[3]=getSBoxValue(temp[3]);  
             }  
    
             temp[0] =  temp[0] ^ Rcon[i/Nk];  
         }  
         else if (Nk > 6 && i % Nk == 4)  
         {  
             // Function Subword()  
             {  
                 temp[0]=getSBoxValue(temp[0]);  
                 temp[1]=getSBoxValue(temp[1]);  
                 temp[2]=getSBoxValue(temp[2]);  
                 temp[3]=getSBoxValue(temp[3]);  
             }  
         }  
         RoundKey[i*4+0] = RoundKey[(i-Nk)*4+0] ^ temp[0];  
         RoundKey[i*4+1] = RoundKey[(i-Nk)*4+1] ^ temp[1];  
         RoundKey[i*4+2] = RoundKey[(i-Nk)*4+2] ^ temp[2];  
         RoundKey[i*4+3] = RoundKey[(i-Nk)*4+3] ^ temp[3];  
         i++;  
     }  
 } 

    
 // This function adds the round key to state.  
 // The round key is added to the state by an XOR function.  
 void AddRoundKey(int round)  
 {  
     int i,j;  
     for(i=0;i<4;i++)  
     {  
         for(j=0;j<4;j++)  
         {  
             state[j][i] ^= RoundKey[round * Nb * 4 + i * Nb + j];  
         }  
     }  
 }  
    
 // The SubBytes Function Substitutes the values in the  
 // state matrix with values in an S-box.  
 void InvSubBytes()  
 {  
     int i,j;  
     for(i=0;i<4;i++)  
     {  
         for(j=0;j<4;j++)  
         {  
             state[i][j] = getSBoxInvert(state[i][j]);  
    
         }  
     }  
 }  
    
 // The ShiftRows() function shifts the rows in the state to the left.  
 // Each row is shifted with different offset.  
 // Offset = Row number. So the first row is not shifted.  
 void InvShiftRows()  
 {  
     unsigned char temp;  
    
     // Rotate first row 1 columns to right     
         temp=state[1][3];  
     state[1][3]=state[1][2];  
     state[1][2]=state[1][1];  
     state[1][1]=state[1][0];  
     state[1][0]=temp;  
    
     // Rotate second row 2 columns to right     
         temp=state[2][0];  
     state[2][0]=state[2][2];  
     state[2][2]=temp;  
    
     temp=state[2][1];  
     state[2][1]=state[2][3];  
     state[2][3]=temp;  
    
     // Rotate third row 3 columns to right  
     temp=state[3][0];  
     state[3][0]=state[3][1];  
     state[3][1]=state[3][2];  
     state[3][2]=state[3][3];  
     state[3][3]=temp;  
 }  
    
 // xtime is a macro that finds the product of {02} and the argument to xtime modulo {1b}   
 #define xtime(x)   ((x<<1) ^ (((x>>7) & 1) * 0x1b))  
    
 // Multiplty is a macro used to multiply numbers in the field GF(2^8)  
 #define Multiply(x,y) (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))  
    
 // MixColumns function mixes the columns of the state matrix.  
 // The method used to multiply may be difficult to understand for beginners.  
 // Please use the references to gain more information.  
 void InvMixColumns()  
 {  
     int i;  
     unsigned char a,b,c,d;  
     for(i=0;i<4;i++)  
     {     
      
         a = state[0][i];  
         b = state[1][i];  
         c = state[2][i];  
         d = state[3][i];  
    
          
         state[0][i] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);  
         state[1][i] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);  
         state[2][i] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);  
         state[3][i] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);  
     }  
 }  
    
 // InvCipher is the main function that decrypts the CipherText.  
 void InvCipher()  
 {  
     int i,j,round=0;  
    
     //Copy the input CipherText to state array.  
     for(i=0;i<4;i++)  
     {  
         for(j=0;j<4;j++)  
         {  
             state[j][i] = in[i*4 + j];  
         }  
     }  
    
     // Add the First round key to the state before starting the rounds.  
        AddRoundKey(Nr);  
    
    
    
             // There will be Nr rounds.  
     // The first Nr-1 rounds are identical.  
     // These Nr-1 rounds are executed in the loop below.  
     for(round=Nr-1;round>0;round--)  
     {  
         InvShiftRows();  
         InvSubBytes();  
         AddRoundKey(round);  
         InvMixColumns();  
     }  
      
         // The last round is given below.  
     // The MixColumns function is not here in the last round.  
     InvShiftRows();  
     InvSubBytes();  
     AddRoundKey(0);  
    
     // The decryption process is over.  
     // Copy the state array to output array.  
     for(i=0;i<4;i++)  
     {  
         for(j=0;j<4;j++)  
         {  
             out[i*4+j]=state[j][i];  
         }  
     }  
 }  
 void main()  
 {  
     int i;  
    
     // Receive the length of key here.  
     while(Nr!=128 && Nr!=192 && Nr!=256)  
     {  
         printf("Enter the length of Key(128, 192 or 256 only): ");  
         scanf("%d",&Nr);  
     }  
     // Calculate Nk and Nr from the received value.  
     Nk = Nr / 32;  
     Nr = Nk + 6;  
    
    
    

     // The array temp stores the key.  
     // The array temp2 stores the plaintext.  
     unsigned char temp[32] = {0x00  ,0x01  ,0x02  ,0x03  ,0x04  ,0x05  ,0x06  ,0x07  ,0x08  ,0x09  ,0x0a  ,0x0b  ,0x0c  ,0x0d  ,0x0e  ,0x0f};  
     unsigned char temp2[32]= 
{0x69  ,0xc4  ,0xe0  ,0xd8  ,0x6a  ,0x7b  ,0x04  ,0x30  ,0xd8  ,0xcd  ,0xb7  ,0x80  ,0x70  ,0xb4  ,0xc5  ,0x5a};  
      
         // Copy the Key and CipherText  
     for(i=0;i<Nk*4;i++)  
     {  
         Key[i]=temp[i];  
         in[i]=temp2[i];  
     }  
 //The Key-Expansion routine must be called before the decryption routine.  
        KeyExpansion();  
    
     // The next function call decrypts the CipherText with the Key using AES algorithm.  
        InvCipher();  
    
     // Output the decrypted text.  
     printf("\nText after decryption:\n");  
     for(i=0;i<Nb*4;i++)  
     {  
         printf("%02x ",out[i]);  
     }  
     printf("\n\n");  
 }

Post your converted code.

hi i have posted the code ...please check it out...This code works very well...I want decryption using Equivalent Inverse Cipher....please if you have any idea of it help me out..

Be a part of the DaniWeb community

We're a friendly, industry-focused community of developers, IT pros, digital marketers, and technology enthusiasts meeting, networking, learning, and sharing knowledge.