how can calculate complixty for this code

package ca.pfv.spmf.algorithms.frequentpatterns.fpgrowth_with_strings;

/* This file is copyright (c) 2008-2013 Philippe Fournier-Viger
* 
* This file is part of the SPMF DATA MINING SOFTWARE
* (http://www.philippe-fournier-viger.com/spmf).
* 
* SPMF is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
* 
* SPMF is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along with
* SPMF. If not, see <http://www.gnu.org/licenses/>.
*/


import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/** 
 * This is an implementation of the FPGROWTH algorithm (Han et al., 2004) that take
 * as input a transaction database where items are represented by strings rather
 * than integers.
 * FPGrowth is described here:
 * <br/><br/>
 * 
 * Han, J., Pei, J., & Yin, Y. (2000, May). Mining frequent patterns without candidate generation. In ACM SIGMOD Record (Vol. 29, No. 2, pp. 1-12). ACM
 * <br/><br/>
 * 
 * This is an optimized version that saves the result to a file.
 *
 * @see FPTree_Strings
 * @author Philippe Fournier-Viger
 */
public class AlgoFPGrowth_Strings {


    // for statistics
    private long startTimestamp; // start time of the latest execution
    private long endTime; // end time of the latest execution
    private int transactionCount = 0; // transaction count in the database
    private int itemsetCount; // number of freq. itemsets found

    // minimum support threshold
    public int relativeMinsupp;

    // object to write the output file
    BufferedWriter writer = null; 


    /**
     * Default constructor
     */
    public AlgoFPGrowth_Strings() {

    }

    /**
     * Run the algorithm.
     * @param input the file path of an input transaction database.
     * @param output the path of the desired output file
     * @param minsupp minimum support threshold as a percentage (double)
     * @throws IOException exception if error while writing the file
     */
    public void runAlgorithm(String input, String output, double minsupp) throws FileNotFoundException, IOException {
        // record the start time
        startTimestamp = System.currentTimeMillis();
        // reinitialize the number of itemsets found to 0
        itemsetCount =0;
        // Prepare the output file
        writer = new BufferedWriter(new FileWriter(output)); 

        // (1) PREPROCESSING: Initial database scan to determine the frequency of each item
        // The frequency is store in a map where:
        // key: item   value: support count
        final Map<String, Integer> mapSupport = new HashMap<String, Integer>();
        // call this method  to perform the database scan
        scanDatabaseToDetermineFrequencyOfSingleItems(input, mapSupport);

        // convert the absolute minimum support to a relative minimum support
        // by multiplying by the database size.
        this.relativeMinsupp = (int) Math.ceil(minsupp * transactionCount);

        // (2) Scan the database again to build the initial FP-Tree
        // Before inserting a transaction in the FPTree, we sort the items
        // by descending order of support.  We ignore items that
        // do not have the minimum support.

        // create the FPTree
        FPTree_Strings tree = new FPTree_Strings();


        BufferedReader reader = new BufferedReader(new FileReader(input));
        String line;
        // for each line (transaction) in the input file until the end of file
        while( ((line = reader.readLine())!= null)){ 
            // if the line is  a comment, is  empty or is a
            // kind of metadata
            if (line.isEmpty() == true ||
                    line.charAt(0) == '#' || line.charAt(0) == '%'
                            || line.charAt(0) == '@') {
                continue;
            }

            // split the transaction into items
            String[] lineSplited = line.split(" ");
            // create an array list to store the items
            List<String> transaction = new ArrayList<String>();
            // for each item in the transaction
            for(String itemString : lineSplited){  
                // if it is frequent, add it to the transaction
                // otherwise not because it cannot be part of a frequent itemset.
                if(mapSupport.get(itemString) >= relativeMinsupp){
                    transaction.add(itemString);    
                }
            }
            // sort item in the transaction by descending order of support
            Collections.sort(transaction, new Comparator<String>(){
                public int compare(String item1, String item2){
                    // compare the support
                    int compare = mapSupport.get(item2) - mapSupport.get(item1);
                    // if the same support, we check the lexical ordering!
                    if(compare == 0){ 
                        return item1.compareTo(item2);
                    }
                    // otherwise use the support
                    return compare;
                }
            });
            // add the sorted transaction to the fptree.
            tree.addTransaction(transaction);
        }
        // close the input file
        reader.close();

        // We create the header table for the tree
        tree.createHeaderList(mapSupport);

        // (5) We start to mine the FP-Tree by calling the recursive method.
        // Initially, the prefix alpha is empty.
        String[] prefixAlpha = new String[0];
        if(tree.headerList.size() > 0) {
            fpgrowth(tree, prefixAlpha, transactionCount, mapSupport);
        }

        // close the output file
        writer.close();
        // record the end time
        endTime= System.currentTimeMillis();

//      print(tree.root, " ");
    }

//  private void print(FPNode node, String indentation) {
//      System.out.println(indentation + "NODE : " + node.itemID + " COUNTER" + node.counter);
//      for(FPNode child : node.childs) {
//          print(child, indentation += "\t");
//      }
//  }

    /**
     * This method scans the input database to calculate the support of single items
     * @param input the path of the input file
     * @param mapSupport a map for storing the support of each item (key: item, value: support)
     * @throws IOException  exception if error while writing the file
     */
    private void scanDatabaseToDetermineFrequencyOfSingleItems(String input,
            final Map<String, Integer> mapSupport)
            throws FileNotFoundException, IOException {
        //Create object for reading the input file
        BufferedReader reader = new BufferedReader(new FileReader(input));
        String line;
        // for each line (transaction) until the end of file
        while( ((line = reader.readLine())!= null)){ 
            // if the line is  a comment, is  empty or is a
            // kind of metadata
            if (line.isEmpty() == true ||
                    line.charAt(0) == '#' || line.charAt(0) == '%'
                            || line.charAt(0) == '@') {
                continue;
            }

            // split the transaction into items
            String[] lineSplited = line.split(" ");
             // for each item in the transaction
            for(String itemString : lineSplited){ 
                // increase the support count of the item
                Integer count = mapSupport.get(itemString);
                if(count == null){
                    mapSupport.put(itemString, 1);
                }else{
                    mapSupport.put(itemString, ++count);
                }
            }
            // increase the transaction count
            transactionCount++;
        }
        // close the input file
        reader.close();
    }


    /**
     * This method mines pattern from a Prefix-Tree recursively
     * @param tree  The Prefix Tree
     * @param prefix  The current prefix "alpha"
     * @param mapSupport The frequency of each item in the prefix tree.
     * @throws IOException   exception if error writing the output file
     */
    private void fpgrowth(FPTree_Strings tree, String[] prefixAlpha, int prefixSupport, Map<String, Integer> mapSupport) throws IOException {
        // We need to check if there is a single path in the prefix tree or not.
        if(tree.hasMoreThanOnePath == false){
            // That means that there is a single path, so we 
            // add all combinations of this path, concatenated with the prefix "alpha", to the set of patterns found.
            addAllCombinationsForPathAndPrefix(tree.root.childs.get(0), prefixAlpha); // CORRECT?

        }else{ // There is more than one path
            fpgrowthMoreThanOnePath(tree, prefixAlpha, prefixSupport, mapSupport);
        }
    }

    /**
     * Mine an FP-Tree having more than one path.
     * @param tree  the FP-tree
     * @param prefix  the current prefix, named "alpha"
     * @param mapSupport the frequency of items in the FP-Tree
     * @throws IOException   exception if error writing the output file
     */
    private void fpgrowthMoreThanOnePath(FPTree_Strings tree, String [] prefixAlpha, int prefixSupport, Map<String, Integer> mapSupport) throws IOException {
        // We process each frequent item in the header table list of the tree in reverse order.
        for(int i= tree.headerList.size()-1; i>=0; i--){
            String item = tree.headerList.get(i);

            int support = mapSupport.get(item);
            // if the item is not frequent, we skip it
            if(support <  relativeMinsupp){
                continue;
            }
            // Create Beta by concatening Alpha with the current item
            // and add it to the list of frequent patterns
            String [] beta = new String[prefixAlpha.length+1];
            System.arraycopy(prefixAlpha, 0, beta, 0, prefixAlpha.length);
            beta[prefixAlpha.length] = item;

            // calculate the support of beta
            int betaSupport = (prefixSupport < support) ? prefixSupport: support;
            // save beta to the output file
            writeItemsetToFile(beta, betaSupport);

            // === Construct beta's conditional pattern base ===
            // It is a subdatabase which consists of the set of prefix paths
            // in the FP-tree co-occuring with the suffix pattern.
            List<List<FPNode_Strings>> prefixPaths = new ArrayList<List<FPNode_Strings>>();
            FPNode_Strings path = tree.mapItemNodes.get(item);
            while(path != null){
                // if the path is not just the root node
                if(path.parent.itemID != null){
                    // create the prefixpath
                    List<FPNode_Strings> prefixPath = new ArrayList<FPNode_Strings>();
                    // add this node.
                    prefixPath.add(path);   // NOTE: we add it just to keep its support,
                    // actually it should not be part of the prefixPath

                    //Recursively add all the parents of this node.
                    FPNode_Strings parent = path.parent;
                    while(parent.itemID != null){
                        prefixPath.add(parent);
                        parent = parent.parent;
                    }
                    // add the path to the list of prefixpaths
                    prefixPaths.add(prefixPath);
                }
                // We will look for the next prefixpath
                path = path.nodeLink;
            }

            // (A) Calculate the frequency of each item in the prefixpath
            Map<String, Integer> mapSupportBeta = new HashMap<String, Integer>();
            // for each prefixpath
            for(List<FPNode_Strings> prefixPath : prefixPaths){
                // the support of the prefixpath is the support of its first node.
                int pathCount = prefixPath.get(0).counter;  
                 // for each node in the prefixpath,
                // except the first one, we count the frequency
                for(int j=1; j<prefixPath.size(); j++){ 
                    FPNode_Strings node = prefixPath.get(j);
                    // if the first time we see that node id
                    if(mapSupportBeta.get(node.itemID) == null){
                        // just add the path count
                        mapSupportBeta.put(node.itemID, pathCount);
                    }else{
                        // otherwise, make the sum with the value already stored
                        mapSupportBeta.put(node.itemID, mapSupportBeta.get(node.itemID) + pathCount);
                    }
                }
            }

            // (B) Construct beta's conditional FP-Tree
            FPTree_Strings treeBeta = new FPTree_Strings();
            // add each prefixpath in the FP-tree
            for(List<FPNode_Strings> prefixPath : prefixPaths){
                treeBeta.addPrefixPath(prefixPath, mapSupportBeta, relativeMinsupp); 
            }  
            // Create the header list.
            treeBeta.createHeaderList(mapSupportBeta); 

            // Mine recursively the Beta tree if the root as child(s)
            if(treeBeta.root.childs.size() > 0){
                // recursive call
                fpgrowth(treeBeta, beta, betaSupport, mapSupportBeta);
            }
        }

    }

    /**
     * This method is for adding recursively all combinations of nodes in a path, concatenated with a given prefix,
     * to the set of patterns found.
     * @param nodeLink the first node of the path
     * @param prefix  the prefix
     * @param minsupportForNode the support of this path.
     * @throws IOException 
     */
    private void addAllCombinationsForPathAndPrefix(FPNode_Strings node, String[] prefix) throws IOException {
        // Concatenate the node item to the current prefix
        String [] itemset = new String[prefix.length+1];
        System.arraycopy(prefix, 0, itemset, 0, prefix.length);
        itemset[prefix.length] = node.itemID;

        // save the resulting itemset to the file with its support
        writeItemsetToFile(itemset, node.counter);

        if(node.childs.size() != 0) {
            addAllCombinationsForPathAndPrefix(node.childs.get(0), itemset);
            addAllCombinationsForPathAndPrefix(node.childs.get(0), prefix);
        }
    }


    /**
     * Write a frequent itemset that is found to the output file.
     */
    private void writeItemsetToFile(String [] itemset, int support) throws IOException {
        // increase the number of itemsets found for statistics purpose
        itemsetCount++;

        // create a string buffer 
        StringBuilder buffer = new StringBuilder();
        // write items from the itemset to the StringBuilder
        for(int i=0; i< itemset.length; i++){
            buffer.append(itemset[i]);
            if(i != itemset.length-1){
                buffer.append(' ');
            }
        }
        // append the support of the itemset
        buffer.append(':');
        buffer.append(support);
        // write the strinbuffer and create a newline so that we are
        // ready for the next itemset to be written
        writer.write(buffer.toString());
        writer.newLine();
    }

    /**
     * Print statistics about the algorithm execution to System.out.
     */
    public void printStats() {
        System.out
                .println("=============  FP-GROWTH - STATS =============");
        long temps = endTime - startTimestamp;
        System.out.println(" Transactions count from database : " + transactionCount);
        System.out.println(" Frequent itemsets count : " + itemsetCount); 
        System.out.println(" Total time ~ " + temps + " ms");
        System.out
                .println("===================================================");
    }
}

and this code

package ca.pfv.spmf.algorithms.frequentpatterns.fpgrowth_with_strings;

/* This file is copyright (c) 2008-2013 Philippe Fournier-Viger
* 
* This file is part of the SPMF DATA MINING SOFTWARE
* (http://www.philippe-fournier-viger.com/spmf).
* 
* SPMF is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
* 
* SPMF is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along with
* SPMF. If not, see <http://www.gnu.org/licenses/>.
*/


import java.util.ArrayList;
import java.util.List;

/**
 * This is an implementation of a FPTree node for the version of FPGrowth where
 * items are represented by Strings rather than Integers.
 *
 * @see FPTree_Strings
 * @see AlgoFPGrowth_Strings
 * @author Philippe Fournier-Viger
 */
public class FPNode_Strings {
     // item id
    String itemID = null; 
    // support of that node
    int counter = 1;  

    // reference to the parent node or null if this is the root
    FPNode_Strings parent = null; 
    // references to the child(s) of that node if there is some
    List<FPNode_Strings> childs = new ArrayList<FPNode_Strings>();

    FPNode_Strings nodeLink = null; // link to next node with the same item id (for the header table).

    /**
     * Default constructor
     */
    FPNode_Strings(){

    }

    /**
     * Return the immediate child of this node having a given ID.
     * If there is no such child, return null;
     */
    FPNode_Strings getChildWithID(String id) {
        // for each child node
        for(FPNode_Strings child : childs){
            // if the id is the one that we are looking for
            if(child.itemID.equals(id)){
                // return that node
                return child;
            }
        }
        // if not found, return null
        return null;
    }

}

and this code

package ca.pfv.spmf.algorithms.frequentpatterns.fpgrowth_with_strings;

/* This file is copyright (c) 2008-2013 Philippe Fournier-Viger
* 
* This file is part of the SPMF DATA MINING SOFTWARE
* (http://www.philippe-fournier-viger.com/spmf).
* 
* SPMF is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
* 
* SPMF is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along with
* SPMF. If not, see <http://www.gnu.org/licenses/>.
*/


import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;


/**
 * This is an implementation of a FPTree for the version of FPGrowth where
 * items are represented by Strings rather than Integers.
 *
 *
 * @see FPNode_Strings
 * @see FPTree_Strings
 * @see AlgoFPGrowth_Strings
 * @author Philippe Fournier-Viger
 */
public class FPTree_Strings {
    // List of items in the header table
    List<String> headerList = null;
    // List of pairs (item, frequency) of the header table
    Map<String, FPNode_Strings> mapItemNodes = new HashMap<String, FPNode_Strings>();

    // flag that indicate if the tree has more than one path
    boolean hasMoreThanOnePath = false;

    // Map that indicates the last node for each item using the node links
    // key: item   value: an fp tree node
    Map<String, FPNode_Strings> mapItemLastNode = new HashMap<String, FPNode_Strings>();

    // root of the tree
    FPNode_Strings root = new FPNode_Strings(); // null node

    /**
     * Constructor
     */
    FPTree_Strings(){   

    }

    /**
     * Method to fix the node link for an item after inserting a new node.
     * @param item  the item of the new node
     * @param newNode the new node thas has been inserted.
     */
    private void fixNodeLinks(String item, FPNode_Strings newNode) {
        // get the latest node in the tree with this item
        FPNode_Strings lastNode = mapItemLastNode.get(item);
        if(lastNode != null) {
            // if not null, then we add the new node to the node link of the last node
            lastNode.nodeLink = newNode;
        }
        // Finally, we set the new node as the last node 
        mapItemLastNode.put(item, newNode); 

        FPNode_Strings headernode = mapItemNodes.get(item); 
        if(headernode == null){  // there is not
            mapItemNodes.put(item, newNode);
        }
    }

    /**
     * Method for adding a transaction to the fp-tree (for the initial construction
     * of the FP-Tree).
     * @param transaction
     */
    public void addTransaction(List<String> transaction) {
        FPNode_Strings currentNode = root;
        // For each item in the transaction
        for(String item : transaction){
            // look if there is a node already in the FP-Tree
            FPNode_Strings child = currentNode.getChildWithID(item);
            if(child == null){ 
                // there is no node, we create a new one
                FPNode_Strings newNode = new FPNode_Strings();
                newNode.itemID = item;
                newNode.parent = currentNode;
                // we link the new node to its parrent
                currentNode.childs.add(newNode);

                // check if more than one path
                if(!hasMoreThanOnePath && currentNode.childs.size() > 1) {
                    hasMoreThanOnePath = true;
                }

                // we take this node as the current node for the next for loop iteration 
                currentNode = newNode;

                // We update the header table.
                // We check if there is already a node with this id in the header table
                fixNodeLinks(item, newNode);
            }else{ 
                // there is a node already, we update it
                child.counter++;
                currentNode = child;
            }
        }
    }
    /**
     * Method for adding a prefixpath to a fp-tree.
     * @param prefixPath  The prefix path
     * @param mapSupportBeta  The frequencies of items in the prefixpaths
     * @param relativeMinsupp
     */
    void addPrefixPath(List<FPNode_Strings> prefixPath, Map<String, Integer> mapSupportBeta, int relativeMinsupp) {
        // the first element of the prefix path contains the path support
        int pathCount = prefixPath.get(0).counter;  

        FPNode_Strings currentNode = root;
        // For each item in the transaction  (in backward order)
        // (and we ignore the first element of the prefix path)
        for(int i= prefixPath.size()-1; i >=1; i--){ 
            FPNode_Strings pathItem = prefixPath.get(i);
            // if the item is not frequent we skip it
            if(mapSupportBeta.get(pathItem.itemID) < relativeMinsupp){
                continue;
            }

            // look if there is a node already in the FP-Tree
            FPNode_Strings child = currentNode.getChildWithID(pathItem.itemID);
            if(child == null){ 
                // there is no node, we create a new one
                FPNode_Strings newNode = new FPNode_Strings();
                newNode.itemID = pathItem.itemID;
                newNode.parent = currentNode;
                newNode.counter = pathCount;  // SPECIAL 
                currentNode.childs.add(newNode);

                // check if more than one path
                if(!hasMoreThanOnePath && currentNode.childs.size() > 1) {
                    hasMoreThanOnePath = true;
                }

                currentNode = newNode;
                // We update the header table.
                // We check if there is already a node with this id in the header table
                fixNodeLinks(pathItem.itemID, newNode);
            }else{ 
                // there is a node already, we update it
                child.counter += pathCount;
                currentNode = child;
            }
        }
    }

    /**
     * Mehod for creating the list of items in the header table, in descending order of frequency.
     * @param mapSupport the frequencies of each item.
     */
    void createHeaderList(final Map<String, Integer> mapSupport) {
        // create an array to store the header list with
        // all the items stored in the map received as paramete
        headerList =  new ArrayList<String>(mapItemNodes.keySet());

        // sort the header table by decreasing order of support
        Collections.sort(headerList, new Comparator<String>(){
            public int compare(String id1, String id2){
                // compare the support
                int compare = mapSupport.get(id2) - mapSupport.get(id1);
                // if the same support, we check the lexical ordering!
                if(compare ==0){ 
                    return id1.compareTo(id2);
                }
                // otherwise use the support
                return compare;
            }
        });
    }
}

apply Sonar or SonarQube to it.

Be a part of the DaniWeb community

We're a friendly, industry-focused community of developers, IT pros, digital marketers, and technology enthusiasts meeting, networking, learning, and sharing knowledge.