Hi everyones!
I have explore and development on many programming languages as C++, python, perl, java(a little bit) and Assembly (a little bit),and web languages like html, javascript(a little bit) and PHP. Now I'm wanna create my own OS.
My OS will have a simple boot file as starting up a command prompt as reading
a main script file as running all other stript files ass will build the hole operating system.
the biggest problem is, I don't now how to build the boot sector.
I've try to create a assembly boot file and convert it to a .bin file, as was successed.
the plan is to develop my OS on a memory stick and test it with restart the computer,
press F12 to change boot order and choose my memory stick to start and see my OS.
it's the last thing, that write the bin file to memory stick, which is so hard :'(
it will no work to just format the memory stick and put the bin file there.
and ive try to run NASM debbuger and write the boot file in that way, but it just
write a message "read-only, can't write to disc A:", but the memory stick is E::confused:
and then, I am little bad on assembly, can't Im coding the kernel in C++?
then I'm think that i can install freeDOS on memory stick, so Im can create
my OS based on FreeDOS, but Im not really cure that I can install it without losing windows!:S is a memory stick even a good plattform for my own OS, or must I buy a new computer to test my OS?
thankyou everybody as answer:)! Im so less to read hundred of tutorials and download
a lot of junk programs that don't help me a shit to make my OS:@!!!
here is one boot sector code I'm downloaded on internet and tested. it don't work at all
on my computer
; ==================================================================
; The Mike Operating System bootloader
; Copyright (C) 2006 - 2010 MikeOS Developers -- see doc/LICENSE.TXT
;
; Based on a free boot loader by E Dehling. It scans the FAT12
; floppy for KERNEL.BIN (the MikeOS kernel), loads it and executes it.
; This must grow no larger than 512 bytes (one sector), with the final
; two bytes being the boot signature (AA55h). Note that in FAT12,
; a cluster is the same as a sector: 512 bytes.
; ==================================================================
BITS 16
jmp short bootloader_start ; Jump past disk description section
nop ; Pad out before disk description
; ------------------------------------------------------------------
; Disk description table, to make it a valid floppy
; Note: some of these values are hard-coded in the source!
; Values are those used by IBM for 1.44 MB, 3.5" diskette
OEMLabel db "MIKEBOOT" ; Disk label
BytesPerSector dw 512 ; Bytes per sector
SectorsPerCluster db 1 ; Sectors per cluster
ReservedForBoot dw 1 ; Reserved sectors for boot record
NumberOfFats db 2 ; Number of copies of the FAT
RootDirEntries dw 224 ; Number of entries in root dir
; (224 * 32 = 7168 = 14 sectors to read)
LogicalSectors dw 2880 ; Number of logical sectors
MediumByte db 0F0h ; Medium descriptor byte
SectorsPerFat dw 9 ; Sectors per FAT
SectorsPerTrack dw 18 ; Sectors per track (36/cylinder)
Sides dw 2 ; Number of sides/heads
HiddenSectors dd 0 ; Number of hidden sectors
LargeSectors dd 0 ; Number of LBA sectors
DriveNo dw 0 ; Drive No: 0
Signature db 41 ; Drive signature: 41 for floppy
VolumeID dd 00000000h ; Volume ID: any number
VolumeLabel db "MIKEOS "; Volume Label: any 11 chars
FileSystem db "FAT12 " ; File system type: don't change!
; ------------------------------------------------------------------
; Main bootloader code
bootloader_start:
mov ax, 07C0h ; Set up 4K of stack space above buffer
add ax, 544 ; 8k buffer = 512 paragraphs + 32 paragraphs (loader)
cli ; Disable interrupts while changing stack
mov ss, ax
mov sp, 4096
sti ; Restore interrupts
mov ax, 07C0h ; Set data segment to where we're loaded
mov ds, ax
; NOTE: A few early BIOSes are reported to improperly set DL
mov byte [bootdev], dl ; Save boot device number
mov eax, 0 ; Needed for some older BIOSes
; First, we need to load the root directory from the disk. Technical details:
; Start of root = ReservedForBoot + NumberOfFats * SectorsPerFat = logical 19
; Number of root = RootDirEntries * 32 bytes/entry / 512 bytes/sector = 14
; Start of user data = (start of root) + (number of root) = logical 33
floppy_ok: ; Ready to read first block of data
mov ax, 19 ; Root dir starts at logical sector 19
call l2hts
mov si, buffer ; Set ES:BX to point to our buffer (see end of code)
mov bx, ds
mov es, bx
mov bx, si
mov ah, 2 ; Params for int 13h: read floppy sectors
mov al, 14 ; And read 14 of them
pusha ; Prepare to enter loop
read_root_dir:
popa ; In case registers are altered by int 13h
pusha
stc ; A few BIOSes do not set properly on error
int 13h ; Read sectors using BIOS
jnc search_dir ; If read went OK, skip ahead
call reset_floppy ; Otherwise, reset floppy controller and try again
jnc read_root_dir ; Floppy reset OK?
jmp reboot ; If not, fatal double error
search_dir:
popa
mov ax, ds ; Root dir is now in [buffer]
mov es, ax ; Set DI to this info
mov di, buffer
mov cx, word [RootDirEntries] ; Search all (224) entries
mov ax, 0 ; Searching at offset 0
next_root_entry:
xchg cx, dx ; We use CX in the inner loop...
mov si, kern_filename ; Start searching for kernel filename
mov cx, 11
rep cmpsb
je found_file_to_load ; Pointer DI will be at offset 11
add ax, 32 ; Bump searched entries by 1 (32 bytes per entry)
mov di, buffer ; Point to next entry
add di, ax
xchg dx, cx ; Get the original CX back
loop next_root_entry
mov si, file_not_found ; If kernel is not found, bail out
call print_string
jmp reboot
found_file_to_load: ; Fetch cluster and load FAT into RAM
mov ax, word [es:di+0Fh] ; Offset 11 + 15 = 26, contains 1st cluster
mov word [cluster], ax
mov ax, 1 ; Sector 1 = first sector of first FAT
call l2hts
mov di, buffer ; ES:BX points to our buffer
mov bx, di
mov ah, 2 ; int 13h params: read (FAT) sectors
mov al, 9 ; All 9 sectors of 1st FAT
pusha ; Prepare to enter loop
read_fat:
popa ; In case registers are altered by int 13h
pusha
stc
int 13h ; Read sectors using the BIOS
jnc read_fat_ok ; If read went OK, skip ahead
call reset_floppy ; Otherwise, reset floppy controller and try again
jnc read_fat ; Floppy reset OK?
mov si, disk_error ; If not, print error message and reboot
call print_string
jmp reboot ; Fatal double error
read_fat_ok:
popa
mov ax, 2000h ; Segment where we'll load the kernel
mov es, ax
mov bx, 0
mov ah, 2 ; int 13h floppy read params
mov al, 1
push ax ; Save in case we (or int calls) lose it
; Now we must load the FAT from the disk. Here's how we find out where it starts:
; FAT cluster 0 = media descriptor = 0F0h
; FAT cluster 1 = filler cluster = 0FFh
; Cluster start = ((cluster number) - 2) * SectorsPerCluster + (start of user)
; = (cluster number) + 31
load_file_sector:
mov ax, word [cluster] ; Convert sector to logical
add ax, 31
call l2hts ; Make appropriate params for int 13h
mov ax, 2000h ; Set buffer past what we've already read
mov es, ax
mov bx, word [pointer]
pop ax ; Save in case we (or int calls) lose it
push ax
stc
int 13h
jnc calculate_next_cluster ; If there's no error...
call reset_floppy ; Otherwise, reset floppy and retry
jmp load_file_sector
; In the FAT, cluster values are stored in 12 bits, so we have to
; do a bit of maths to work out whether we're dealing with a byte
; and 4 bits of the next byte -- or the last 4 bits of one byte
; and then the subsequent byte!
calculate_next_cluster:
mov ax, [cluster]
mov dx, 0
mov bx, 3
mul bx
mov bx, 2
div bx ; DX = [cluster] mod 2
mov si, buffer
add si, ax ; AX = word in FAT for the 12 bit entry
mov ax, word [ds:si]
or dx, dx ; If DX = 0 [cluster] is even; if DX = 1 then it's odd
jz even ; If [cluster] is even, drop last 4 bits of word
; with next cluster; if odd, drop first 4 bits
odd:
shr ax, 4 ; Shift out first 4 bits (they belong to another entry)
jmp short next_cluster_cont
even:
and ax, 0FFFh ; Mask out final 4 bits
next_cluster_cont:
mov word [cluster], ax ; Store cluster
cmp ax, 0FF8h ; FF8h = end of file marker in FAT12
jae end
add word [pointer], 512 ; Increase buffer pointer 1 sector length
jmp load_file_sector
end: ; We've got the file to load!
pop ax ; Clean up the stack (AX was pushed earlier)
mov dl, byte [bootdev] ; Provide kernel with boot device info
jmp 2000h:0000h ; Jump to entry point of loaded kernel!
; ------------------------------------------------------------------
; BOOTLOADER SUBROUTINES
reboot:
mov ax, 0
int 16h ; Wait for keystroke
mov ax, 0
int 19h ; Reboot the system
print_string: ; Output string in SI to screen
pusha
mov ah, 0Eh ; int 10h teletype function
.repeat:
lodsb ; Get char from string
cmp al, 0
je .done ; If char is zero, end of string
int 10h ; Otherwise, print it
jmp short .repeat
.done:
popa
ret
reset_floppy: ; IN: [bootdev] = boot device; OUT: carry set on error
push ax
push dx
mov ax, 0
mov dl, byte [bootdev]
stc
int 13h
pop dx
pop ax
ret
l2hts: ; Calculate head, track and sector settings for int 13h
; IN: logical sector in AX, OUT: correct registers for int 13h
push bx
push ax
mov bx, ax ; Save logical sector
mov dx, 0 ; First the sector
div word [SectorsPerTrack]
add dl, 01h ; Physical sectors start at 1
mov cl, dl ; Sectors belong in CL for int 13h
mov ax, bx
mov dx, 0 ; Now calculate the head
div word [SectorsPerTrack]
mov dx, 0
div word [Sides]
mov dh, dl ; Head/side
mov ch, al ; Track
pop ax
pop bx
mov dl, byte [bootdev] ; Set correct device
ret
; ------------------------------------------------------------------
; STRINGS AND VARIABLES
kern_filename db "KERNEL BIN" ; MikeOS kernel filename
disk_error db "Floppy error! Press any key...", 0
file_not_found db "KERNEL.BIN not found!", 0
bootdev db 0 ; Boot device number
cluster dw 0 ; Cluster of the file we want to load
pointer dw 0 ; Pointer into Buffer, for loading kernel
; ------------------------------------------------------------------
; END OF BOOT SECTOR AND BUFFER START
times 510-($-$$) db 0 ; Pad remainder of boot sector with zeros
dw 0AA55h ; Boot signature (DO NOT CHANGE!)
buffer: ; Disk buffer begins (8k after this, stack starts)
; ==================================================================